一文了解汽车芯片的分类及用途介绍
汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片)。功率器件集成度较低,属于分立器件,主要包括电动车逆变器和变换器中的IGBT、MOSFET等。传感器则包括智能车上的雷达、摄像头等。
一、车规级MCU芯片
车规级MCU芯片是汽车电子控制单元(ECU)的重要组成部分,广泛用于车内几十种次系统中,如悬挂、气囊、门控等,是汽车电子系统内部运算、处理的核心。MCU芯片按照CPU一次处理数据的位数分为8、16和32位MCU。 (1)8位MCU:具有简单耐用、低价的优势,提供低端控制功能,如风扇控制、空调控制、雨刷、天窗、车窗升降、低端仪表板、集线盒、座椅控制、门控模块等。 (2)16位MCU:提供终端控制功能,用于动力系统和底盘控制系统,如引擎控制、齿轮与离合器控制和电子式涡轮系统、悬吊系统、电子式动力方向盘、扭力分散控制和电子泵、电子刹车等。 (3)32位MCU:工作频率最高,处理能力、执行效能更好,应用也更广泛,价格也在逐渐降低;提供高端控制功能,在实现L1和L2的自动驾驶功能中扮演重要角色。 据统计,每辆传统汽车平均用到70颗以上MCU,智能电动汽车则超300颗。不过随着整车电子架构的集中化趋势加速,单车MCU的用量和种类也将出现“缩减”。MCU的性能将进一步提升,高端MCU将逐渐替代部分低端MCU的需求。
二、AI芯片
AI芯片是未来智能化汽车的“大脑”。这类芯片一般是一种集成了CPU、图像处理GPU、音频处理DSP、深度学习加速单元NPU以及内存和各种I/O接口的SOC芯片,不同于以CPU运算为主的MCU。在汽车中,主要在智能座舱和自动驾驶两个方面使用SoC芯片。 未来智能座舱所代表的“车载信息娱乐系统+流媒体后视镜+抬头显示系统+全液晶仪表+车联网系统+车内乘员监控系统”等多重体验,都将依赖于智能座舱的SoC芯片。 自动驾驶芯片是指可实现高级别自动驾驶的SoC芯片,通常具有“CPU+XPU”的多核架构。L3及以上的车端中央计算平台需要达到500+TOPS的算力,仅具备CPU处理器的芯片无法满足这一需求。自动驾驶的SoC芯片上通常需要集成除CPU之外的一个或多个XPU来进行AI运算。用于AI运算的XPU可以选择GPU/FPGA/ASIC等。 GPU、FPGA和ASIC在自动驾驶AI运算领域各有优势:CPU通常是SoC芯片的控制中心,其优点在于调度、管理、协调能力强,但计算能力相对有限。而对于AI计算,人们通常使用GPU/FPGA/ASIC进行加强:1)GPU适合数据密集型应用进行计算和处理,尤其擅长处理CNN/DNN等图形类机器学习算法。2)FPGA对RNN/LSTM和强化学习等顺序类机器学习算法具有明显优势。3)ASIC是面向特定用户算法需求设计的专用芯片,具有体积更小、重量更轻、功耗更低、性能提高、保密性增强以及成本降低等优点。
三、功率器件
功率半导体器件是用于电力转换和控制的半导体器件。其典型应用场景包括变频、变压、变流、功率放大和功率管理等,主要类型为IGBT和MOSFET。在具体应用上,燃油车一般使用低压MOSFET,其衬底材料为Si。相比之下,BEV对功率器件的性能要求更高,IGBT和高压MOSFET更为主流。
IGBT(绝缘栅双极型晶体管)是一种全控型电压驱动的大功率电力电子器件,由双极性晶体管(BJT)和绝缘栅场效应管(MOS)组成。IGBT的特点是兼具了BJT的导通电压低、通态电流大、损耗小和MOS的开关速度高、输入阻抗高、控制功率小、驱动电路简单等优点。在电动汽车中,IGBT的应用主要集中在三个方面:首先,在电控系统中,IGBT模块将直流转换为交流,驱动汽车电机(电控模块);其次,在车载空调控制系统中,负责小功率直流/交流逆变,该模块的工作电压不高,单价相对也低一些;最后,在充电桩中,IGBT模块被用作开关使用。
IGBT最常见的形式是模块,主要由IGBT芯片、FWD芯片、主端子、辅助端子、浇注封装材、绝缘基板、金属基、树脂外盖和树脂外壳等组成。多个芯片以绝缘方式组装到金属基板上,采用空心塑壳封装,与空气的隔绝材料是高压硅脂或者硅脂,以及其他可能的软性绝缘材料。

从功能安全角度来看,IGBT模块具有以下优点:(1)多个IGBT芯片并联,使得IGBT的电流规格更大;(2)多个IGBT芯片按照特定的电路形式组合,如半桥、全桥等,可以减少外部电路连接的复杂性;(3)多个IGBT芯片处于同一个金属基板上,等于是在独立的散热器与IGBT芯片之间增加了一块均热板,工作更可靠;(4)模块中多个IGBT芯片之间的连接与多个分立形式的单管进行外部连接相比,电路布局更好,引线电感更小。因此,模块的外部引线端子更适合高压和大电流连接。
四、传感器类芯片
汽车传感器主要分为两大类,一类是车辆感知传感器,包括速度/位置传感器、低/中压压力传感器、高压传感器、加速度传感器、角速度传感器、磁力计和温度传感器。另一类是环境感知传感器,包括氧、气体传感器、车载摄像头、超声波雷达、毫米波雷达和激光雷达。

五、存储器
汽车传感器存储器分为闪存和内存,其中闪存包括NANDFlash和NORFlash,内存包括DRAM和SRAM。随着智能化的发展,ADAS和信息娱乐系统产生的数据将不断增加,根据CounterpointResearch的估计,未来十年,单车存储容量将达到2TB-11TB。
相关文章:
一文了解汽车芯片的分类及用途介绍
汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片&am…...
Linux0.11内核源码解析-truncate.c
truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块,包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0,并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…...
LED驱动型IC芯片的原理介绍
一、LED驱动器是什么 LED驱动器(LED Driver),是指驱动LED发光或LED模块组件正常工作的电源调整电子器件。由于LED PN结的导通特性决定,它能适应的电源电压和电流变动范围十分狭窄,稍许偏离就可能无法点亮LED或者发光效…...
VLAN实验
实验题目如下: 实验拓扑如下: 实验要求如下: 【1】PC1/3的接口均为access模式,且属于van2,在同一网段 【2】PC2/4/5/6的IP地址在同一网段,与PC1/3不在同一网段 【3】PC2可以访问4/5/6,PC4不能…...
Qt应用开发(基础篇)——高级纯文本窗口 QPlainTextEdit
一、前言 QPlainTextEdit类继承于QAbstractScrollArea,QAbstractScrollArea继承于QFrame,是Qt用来显示和编辑纯文本的窗口。 滚屏区域基类https://blog.csdn.net/u014491932/article/details/132245486?spm1001.2014.3001.5501框架类QFramehttps://blo…...
三维可视化平台有哪些?Sovit3D可视化平台怎么样?
随着社会经济的发展和数字技术的进步,互联网行业发展迅速。为了适应新时代社会发展的需要,大数据在这个社会经济发展过程中随着技术的进步而显得尤为重要。同时,大数据技术的快速发展进程也推动了可视化技术的飞速发展,国内外各类…...
Xxl-job安装部署以及SpringBoot集成Xxl-job使用
1、安装Xxl-job: 可以使用docker拉取镜像部署和源码编译两种方式,这里选择源码编译安装。 代码拉取地址: https://github.com/xuxueli/xxl-job/tree/2.1.2 官方开发文档: https://www.xuxueli.com/xxl-job/#%E3%80%8A%E5%88%…...
【【超声波避障小车代码】】
超声波避障小车代码 #include <reg51.h> //通用51头文件 #include <intrins.h> //使用了_nop()_函数#define uchar unsigned char //用 uchar 表示 unsigned char 类型 #define uint unsigned int //用 uint 表示 unsigned int 类型sbit EN…...
TDI(Time Delay Integration)
TDI(Time Delay Integration)是一种特殊的图像采集技术,常用于线阵CCD(Charge-Coupled Device)相机。TDI技术可以在保持高分辨率的同时增强图像的信噪比(Signal-to-Noise Ratio, SNR)࿰…...
RHCE——一、安装部署及例行性工作
RHCE 一、网络服务1、准备工作2、RHEL9操作系统的安装部署3、配置并优化RHEL9操作系统4、网络配置5、修改网络连接 二、例行性工作1、单一执行的例行性工作2、循环执行的例行性工作 三、书写定时任务的注意事项四、系统级别的计划任务五、实验1、实验一:编写脚本tes…...
服务器数据库中了360后缀勒索病毒怎么办?360后缀勒索病毒的加密形式
随着信息技术的发展,企业的计算机服务器数据库变得越来越重要。然而,在数字时代,网络上的威胁也日益增多。近期,我们收到很多企业的求助,企业的计算机服务器遭到了360后缀勒索病毒的攻击,导致服务器内的所有…...
期权就是股指期货吗,哪个好做一点?
近年来,场内ETF期权产品不断扩大,越来越多的投资者有投资期权的想法。当我们看到期权时,我们会不知不觉地想到期货,虽然期货与期权只有一个字的区别,但实际上有很大的不同,那么期权就是股指期货吗ÿ…...
week32
本周目标: Belady现象的解释 操作系统 计组IO/MM chapter 刷力扣 ubuntu磁盘/网络/命令行进阶*1 tarball之类的使用 Question 大数据系统实验要学吗? 据说课讲得不好这是一门类似数据库的课程——大数据之hadoop / hive / hbase 的区别是什么&a…...
【数据库】P1 数据库基本常识
数据库基本常识 数据库 ≠ 数据库管理系统表(Table)SQL是什么 数据库 ≠ 数据库管理系统 数据库是保存有组织的数据的容器,数据库称为 DB(DataBase);数据库管理系统是创建和操纵数据库的软件,数…...
c语言——计算两个数的乘积
//计算两个数的乘积 #include<stdio.h> #include<stdlib.h> int main() {double firstNumber,secondNumber,product;printf("两个浮点数:");scanf("%lf,%lf",&firstNumber,&secondNumber);productfirstNumber*secondNumber…...
单机模型并行最佳实践
单机模型并行最佳实践 模型并行在分布式训练技术中被广泛使用。 先前的帖子已经解释了如何使用 DataParallel 在多个 GPU 上训练神经网络; 此功能将相同的模型复制到所有 GPU,其中每个 GPU 消耗输入数据的不同分区。 尽管它可以极大地加快训练过程&…...
编程练习(3)
一.选择题 第一题: 函数传参的两个变量都是传的地址,而数组名c本身就是地址,int型变量b需要使用&符号,因此答案为A 第二题: 本题考察const修饰指针变量,答案为A,B,C,D 第三题: 注意int 型变…...
PyTorch学习笔记(十三)——现有网络模型的使用及修改
以分类模型的VGG为例 vgg16_false torchvision.models.vgg16(weightsFalse) vgg16_true torchvision.models.vgg16(weightsTrue) 设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的设置为 True 时,网络模型中的参数在数据集上是训练好…...
Python爬虫的scrapy的学习(学习于b站尚硅谷)
目录 一、scrapy 1. scrapy的安装 (1)什么是scrapy (2)scrapy的安装 2. scrapy的基本使用 (1)scrap的使用步骤 (2)代码的演示 3. scrapy之58同城项目结构和基本方法&…...
“深入解析JVM:揭秘Java虚拟机的工作原理“
标题:深入解析JVM:揭秘Java虚拟机的工作原理 摘要:本文将深入解析Java虚拟机(JVM)的工作原理,探讨其内部结构和运行机制。我们将介绍JVM的组成部分、类加载过程、内存管理、垃圾回收、即时编译等关键概念&…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
