当前位置: 首页 > news >正文

AutoSAR配置与实践(基础篇)2.5 RTE对数据一致性的管理

传送门 点击返回 ->AUTOSAR配置与实践总目录

AutoSAR配置与实践(基础篇)2.5 RTE对数据一致性的管理

  • 一、 数据一致性问题引入
  • 二、 数据一致性的管理
    • 2.1 RTE管理 (SWC间)
    • 2.2 中断保护 (SWC内)
    • 2.3 变量保护IRVS (SWC内)
    • 2.4 Task分配
    • 2.5 任务抢占控制

一、 数据一致性问题引入

数据一致性:当多个操作同时读写同一个数据,由于任务的抢占,出现了数据被篡改的情况,造成非预期的数据结果。

在抢占式调度RTOS系统中,可能会出现任务抢占导致的一致性问题:

例如:有两个Task,低优先级Task A和高优先级Task B, Task可抢占式调度系统。
Task A想要计算Var的值(预期结果应为Var = 1*5 = 5).
在这里插入图片描述

  1. Task A:先给GlobalVar赋初值1;
  2. Task B :因优先级高,Ready后打断A,给GlobalVar赋了新值( GlobalVar = 2);
  3. Task A : 在Task B执行结束后继续运算,运算GlobalVar 出错:
    预期值:1*5=5.
    实际值:2 *5 = 10

以上例子中,由于高优先级任务的抢占,导致了数据被篡改,从而引起非预期结果。

二、 数据一致性的管理

2.1 RTE管理 (SWC间)

适用场景: 不同SWC的Runnable访问数据,一般RTE机制自动实现,比如IRead和IWrite
方式:通过操作备份数据而不是原始数据,来防止数据被篡改。

示例代码:

Rte_IRead_<r>_<p>_<d>();//runnable运行前,读取到本地备份数据
User Code   //操作备份数据
Rte_IWrite_<r>_<p>_<d>();//runnable结束后,写入备份数据

针对第一章中的数据篡改示例,实施RTE管理的效果图:

在这里插入图片描述
RTE管理步骤:

  1. Task A :Runnable运行前Rte_Iread把全局变量读到局部变量, local Var = 1;
  2. Task B: 中断Task A重写值后,全局变量GlobalVar = 2;
  3. Task A 运算仍使用缓存数据local Var ,所以运算结果不受影响。

更详细机制介绍可以参考此前2.3章节对S/R类型接口的介绍。

2.2 中断保护 (SWC内)

适用场景:

  • SWC内部不同的Runnable访问共同全局变量,Runnable类似C文件中的函数,这些函数如果被放在不同Task上运行, 可能出现出现同一时刻多个函数共同运行的情况。

  • 如果要保护的代码段比较短,防止中断时间长对高优先级任务的影响。

方式: 通过禁用挂起所有中断、或仅操作系统中断或(如果硬件支持)仅某些中断级别来实现,因此不会出现高优先级打断的情况。

示例代码:

Rte_Enter_<ExclusiveArea>
//被保护的代码区
Rte_Exit_<ExclusiveArea>

针对第一章中的数据篡改示例,实施中断保护的效果图:
在这里插入图片描述
中断保护步骤:

  1. Task A:在操作GlobalVar 前,调用Rte_Enter_关闭中断;
  2. Task B :由于中断被关闭,因此即便高优先级Task B 就绪,也无法打断Task A;
  3. Task A:在操作GlobalVar 后,调用Rte_ Exit _开启中断。
  4. Task B:调度随即被Task B抢占,开始对GlobalVar新的操作。

2.3 变量保护IRVS (SWC内)

适用场景: SWC内部变量保护,限定局变量的作用域在变量的作用域在SWC的不同runnable间。

方式: 被限定的Runnable尝试变量时被限制。InterRunnableVariables在一个AUTOSAR软件组件内的runnable之间建立,所以只能被组件内部的访问。同时可以配置runnble访问范围,示例InterVarA变量只能被Runnable M访问。

示例代码:

Rte_IrvWrite_<r>_<v>
Rte_IrvRead_<r>_<v>

针对第一章中的数据篡改示例,实施变量保护的效果图:

在这里插入图片描述
变量保护步骤:

  1. Task A :赋值InterVarA =1
  2. Task B: 中断TaskA尝试重写值InterVarA,由于变量被保护,重写失败
  3. Task A :运算使用InterVarA 继续运算,运算结果不受影响

2.4 Task分配

将访问全局变量的runnable放在同一个Task中,这样runnable只能顺序执行,不会出现高优先级打断的情况,数据一致性就可以得到保证。

2.5 任务抢占控制

可以通过为受影响的任务分配相同的优先级,为受影响的任务分配相同的内部操作系统资源,或者将OS的任务配置为非抢占性来实现

传送门 点击返回 ->AUTOSAR配置与实践总目录

相关文章:

AutoSAR配置与实践(基础篇)2.5 RTE对数据一致性的管理

传送门 点击返回 ->AUTOSAR配置与实践总目录 AutoSAR配置与实践&#xff08;基础篇&#xff09;2.5 RTE对数据一致性的管理 一、 数据一致性问题引入二、 数据一致性的管理2.1 RTE管理 (SWC间)2.2 中断保护 (SWC内)2.3 变量保护IRVS (SWC内)2.4 Task分配2.5 任务抢占控制 一…...

ASP.NET WEB API通过SugarSql连接MySQL数据库

注意&#xff1a;VS2022企业版可以&#xff0c;社区版可能存在问题。实体名称和字段和数据库中的要一致。 1、创建项目&#xff0c;安装SqlSugarCore、Pomelo.EntityFrameworkCore.MySql插件 2、文件结构 2、appsettings.json { “Logging”: { “LogLevel”: { “Default”: …...

08-微信小程序视图层

08-微信小程序视图层 文章目录 视图层 ViewWXML数据绑定列表渲染条件渲染模板引用importimport 的作用域include WXSS尺寸单位样式导入内联样式选择器全局样式与局部样式 WXS注意事项页面渲染数据处理 视图层 View 框架的视图层由 WXML 与 WXSS 编写&#xff0c;由组件来进行…...

[机器学习]特征工程:特征降维

特征降维 1、简介 特征降维是指通过减少特征空间中的维度&#xff0c;将高维数据映射到一个低维子空间的过程。 在机器学习和数据分析中&#xff0c;特征降维可以帮助减少数据的复杂性、降低计算成本、提高模型性能和可解释性&#xff0c;以及解决维度灾难等问题。特征降维通…...

12. Docker可视化工具

目录 1、前言 2、Docker UI 2.1、部署Docker UI 2.2、管理容器 3、Portainer 3.1、部署Portainer 3.2、管理容器 3.3、添加远程Docker 4、Shipyard 1、前言 Docker 提供了命令行工具来管理 Docker 的镜像和运行 Docker 的容器。我们也可以使用图形工具来管理 Docker。…...

css层叠关系

文章目录 cascading声明冲突应用重置样式表a元素的类选择器顺序问题 cascading cascading – 层叠 解决声明冲突的过程&#xff0c;浏览器会自动处理&#xff1b;就是计算样式的权重&#xff0c;权重大的就被选择&#xff1b; 声明冲突 是指多个选择器选中同一个标签&#x…...

【Unity实战篇 】| 如何在小游戏中快速接入一个新手引导教程

前言 【Unity实战篇 】 | 如何在小游戏中快速接入一个新手引导教程一、简单教程描述二、接入Tutorial Master 实现游戏引导2.1 导入Tutorial Master2插件2.2 添加TutorialMasterManager脚本对象2.3 配置Tutorial&#xff0c;用于管理第一段引导内容2.4 配置Stage&#xff0c;用…...

Lookup Singularity

1. 引言 Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出&#xff1a; 其主要目的是&#xff1a;让SNARK前端生成仅需做lookup的电路。Barry预测这样有很多好处&#xff0c;特别是对于可审计性 以及 形式化验证&#xff…...

idea 本地版本控制 local history

idea 本地版本控制 local history 如何打开 1 自定义快捷键 settings->keymap->搜索框输入 show history -》Add Keyboard Shortcut -》设置为 CtrlAltL 2 右键文件-》local history -》show history 新建文件 版本1&#xff0c;creating class com.geekmice…这个是初…...

【Freertos基础入门】深入浅出freertos互斥量

文章目录 前言一、互斥量是什么&#xff1f;二、互斥量的使用场景三、互斥量的使用1.创建 2.删除互斥量3.give和take四、示例代码总结 前言 FreeRTOS是一款开源的实时操作系统&#xff0c;提供了许多基本的内核对象&#xff0c;其中包括互斥锁&#xff08;Mutex&#xff09;。…...

皮爷咖啡基于亚马逊云科技的数据架构,加速数据治理进程

皮爷咖啡&#xff08;Peet’s Coffee&#xff09;是美国精品咖啡品牌&#xff0c;于2017年进入中国&#xff0c;为中国消费者带来传统经典咖啡饮品&#xff0c;并特别呈现更加丰富的品质咖啡饮品体验。通过深入应用亚马逊云科技云原生数据库产品Amazon Redshift以及Amazon DMS等…...

C++ string类详解

⭐️ string string 是表示字符串的字符串类&#xff0c;该类的接口与常规容器的接口基本一致&#xff0c;还有一些额外的操作 string 的常规操作&#xff0c;在使用 string 类时&#xff0c;需要使用 #include <string> 以及 using namespace std;。 ✨ 帮助文档&…...

深入浅出Pytorch函数——torch.nn.init.ones_

分类目录&#xff1a;《深入浅出Pytorch函数》总目录 相关文章&#xff1a; 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...

一、docker及mysql基本语法

文章目录 一、docker相关命令二、mysql相关命令 一、docker相关命令 &#xff08;1&#xff09;拉取镜像&#xff1a;docker pull <镜像ID/image> &#xff08;2&#xff09;查看当前docker中的镜像&#xff1a;docker images &#xff08;3&#xff09;删除镜像&#x…...

【计算机网络】13、ARP 包:广播自己的 mac 地址和 ip

机器启动时&#xff0c;会向外广播自己的 mac 地址和 ip 地址&#xff0c;这个即称为 arp 协议。范围是未经过路由器的部分&#xff0c;如下图的蓝色部分&#xff0c;范围内的设备都会在本地记录 mac 和 ip 的绑定信息&#xff0c;若有重复则覆盖更新&#xff08;例如先收到 ma…...

通过微软Azure调用GPT的接口API-兼容平替OpenAI官方的注意事项

众所周知&#xff0c;我们是访问不通OpenAI官方服务的&#xff0c;但是我们可以自己通过代理或者使用第三方代理访问接口 现在新出台的规定禁止使用境外的AI大模型接口对境内客户使用&#xff0c;所以我们需要使用国内的大模型接口 国内的效果真的很差&#xff0c;现在如果想使…...

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基本介绍程序设计…...

GAN!生成对抗网络GAN全维度介绍与实战

目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…...

自动驾驶仿真:基于Carsim开发的加速度请求模型

文章目录 前言一、加速度输出变量问题澄清二、配置Carsim动力学模型三、配置Carsim驾驶员模型四、添加VS Command代码五、Run Control联合仿真六、加速度模型效果验证 前言 1、自动驾驶行业中&#xff0c;算法端对于纵向控制的功能预留接口基本都是加速度&#xff0c;我们需要…...

.netcore grpc客户端工厂及依赖注入使用

一、客户端工厂概述 gRPC 与 HttpClientFactory 的集成提供了一种创建 gRPC 客户端的集中方式。可以通过依赖包Grpc.Net.ClientFactory中的AddGrpcClient进行gRPC客户端依赖注入AddGrpcClient函数提供了许多配置项用于处理一些其他事项&#xff1b;例如AOP、重试策略等 二、案…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...