当前位置: 首页 > news >正文

为什么说ChatGPT还不是搜索引擎的对手

一 前言

1950年,英国科学家图灵在一篇论文中预言,人类有可能创造出具有真正智能的机器。

著名的「图灵测试」就此诞生:如果一台机器能够与人类展开对话,而不被辨别出其机器身份,那么称这台机器具有智能。

也是从那时开始,人类世界开始了对人工智能长达半个多世纪的探索,但至少在2000年以前,困难总比惊喜多,人工智能还经历了两次发展寒冬:

一次是在1974-1980年,受限于计算器计算能力,AI技术研究遇冷,研究资助被大规模缩减甚至取消;另一次是在1987-1993年,期间人工智能计算机DARPA的失败为AI泼了一盆冷水。

失败也不全是坏事。跌跌撞撞盛衰起伏的过程中,AI的发展在2006年以后迈进了新的阶段——由机器学习迈入了深度学习阶段,离真正的人工智能更近。

自此之后,人类对AI的探索之旅明显加快,一些重要的里程碑时刻相继出现了。比如2014年,第一台通过图灵测试的计算机诞生,它让人类相信它是一个13岁的男孩;比如2016年,ALphaGo战胜围棋世界冠军李世石。

再到2022年底,ChatGPT一夜爆火。

不过,纵观AI的曲折进程,技术与实验成功之间隔着一道墙,实验成功与大规模应用之间又隔着一道墙,应用落地与最终的商业化之间,也隔着一道墙。

这导致,我们依然无法对AI的进程抱有太高的期待,包括当下火热的ChatGPT。

二 ChatGPT为什么能爆火?

2022年下半年,科技界最受瞩目的大事件,莫过于美国的人工智能研究公司OpenAI发布了ChatGPT。

ChatGPT是一个智能对话系统,用户在注册后,能够对这个系统发出各种各样的提问,系统自动生成答案。

最开始,没有人会想到,这样一个只是提供人机交谈的系统,却成了2022年全球最后一个爆款产品。

OpenAI 11月30日发布了它,短短一周后,全球范围内已经至少有100万人在使用它。

OpenAI的公司估值也水涨船高。根据媒体1月10日的相关报道,微软计划向OpenAI投资100亿美元(合人民币677.51亿元)以收购其49%的股权,目前双方正在谈判,预计OpenAI投后估值将达到290亿美元。

再到1月12日凌晨,OpenAI在社交平台上表示,其开始考虑对ChatGPT进行收费,以实现商业化,可能包括ChatGPT Professional(专业版)、每月订阅付费等方式。

短短半个月的时间,ChatGPT实现了一定程度的规模化、赢得了高估值、还将商业化提上日程,它的成长速度足以令人咂舌。

ChatGPT能短时间内爆火的原因,数智界认为有两点:

第一,从表层来看,ChatGPT表现得更聪明了。

ChatGPT不只能回答简单的知识性问题,还能够回答开放式问题,并且能与用户进行多轮对话。比如用户此前在社交媒体上分享的问题中,就包括了让ChatGPT写代码、与ChatGPT聊人生哲学、让ChatGPT写诗等等。

在很多问题场景下,ChatGPT都给出了出乎意料的回答。比如下面这段,ChatGPT用鲁迅的文笔描述网友的心情:

“在疫情的蔓延中,我困了门里,困了心里。屋外一片荒凉,想起一顿火锅的香味,瞬间让我心慌。这时候我才知道,疫情来临,它让人生无聊而悲凉,也让我们看到自己的无助与弱点。然而我们又岂能放弃对美好的追求,岂能把欲望压抑到不想吃火锅的地步?”

第二,ChatGPT的走红背后,AI大模型正在成为行业趋势。

人工智能中,NLP(自然语言理解)是一个核心概念,被称作是人工智能皇冠上的明珠。

在NLP中,之前往往需要对单个小任务进行训。比如要让AI掌握对话的能力,需要一个小模型、要让AI学会协作,需要另一个小模型、要让AI能阅读能理解,又需要另一个小模型。

但是人工智能从机器学习阶段迈入到深度学习阶段之后,现在单个大模型就可以完成各种类型的任务训练,也就是对不同问题在同一个模型上进行预训练。

深度学习里有个Double Descent现象:随着模型参数变多,测试错误率会先下降、再上升,然后第二次下降。原则上,在成本可接受的情况下,模型越大,准确率越好。

具体到ChatGPT的发展来看:

2018年第一代GPT面世时,OpenAI还只是用它来做语言理解方面的任务;

2019年GPT-2,得益于更高的数据质量和更大数据规模,其生成的故事在流畅度和逻辑性上更加完善;

2020年的GPT-3,更加完善成了一个大型语言预测和生成模型,能够生成长序列的原始文本,语言处理更强大、更快,甚至无需任何特殊的调优;

再到当前的GPT-3.5,则是一个多模态大模型,比起之前的版本更加成熟、准确率越高。

三 ChatGPT的商业化前景如何?

仅当前来看,ChatGPT的表现已经带给了人类惊喜,但必须要知道,它现在依然面临着一些缺陷。

比如在回答某些问题时,它可能给出看似合理、实则是错误乃至荒谬的回答;比如你反复问同一个问题,但是用不同的话术,很可能会得到前后不一的答案;比如它的很多回复过于冗长;比如它现在还无法完全拒绝一些不合理、不道德的请求;

但这些问题的存在并不会完全阻断ChatGPT的商业化路径,OpenAI考虑通过专业版和每月订阅付费开始商业化,就说明了这一点。

国海证券在一份研报中指出,随着ChatGPT的不断调优,其有望在医疗、客服机器人、虚拟人、翻译、营销、游戏、社交、教育、家庭陪护等多个领域被应用,潜在的商业模式存在以下几种:

云服务——客户使用ChatGPT的云服务来支持他们的聊天机器人应用程序;

内容营销——ChatGPT根据用户的兴趣和喜好向用户推送广告;

数据盈利——ChatGPT生成的大量数据,包括会话日志和客户反馈,这些数据可以通过出售给第三方或用于改进ChatGPT的功能来变现;

咨询服务——ChatGPT可以分析客户对话并提供见解和建议,以改善客户体验;

版权授权——ChatGPT可以授权给希望在自己的聊天机器人应用程序中使用其功能的客户。

当然,以上这些潜在的商业模式,实际上是整个对话式AI都面临的巨大空间。ChatGPT只是作为其中最具代表性的AIGC文字内容生产工具之一,优势更明显。

我们也看到,基于ChatGPT的商业潜力,很多科技巨头都在加快布局。反应最快也最激烈的,是微软。

早在2019年,微软就向OpenAI投资了10亿美元,前段时间ChatGPT爆火后,微软又传出欲以100亿美元收购OpenAI的消息——如若交易达成,这将成为微软迄今为止最大的一笔投资。

最新的消息是,微软CEO纳德拉表示,微软计划将ChatGPT等OpenAI的人工智能工具整合进公司所有产品,并将其作为平台供其他企业使用。

一个有趣的细节是,此前微软尽管多年来连续投资OpenAI,但比尔·盖茨并不喜欢这项投资,他对OpenAI的技术持怀疑态度,认为其部分侧重于计算机掌握人类语言含义的能力。

但是在1月12日的一次活动中,当被问及如何看待ChatGPT时,他表示,“这让我能一窥未来,整个平台的方法和创新速度都令我印象深刻。”态度已然转变。

四 ChatGPT会取代搜索引擎吗?

ChatGPT爆红之后,其在编程、文本生成等NLP领域强大的能力已经引发了部分行业的担忧。

比如由于ChatGPT拥有基于对话形式接收输入指令并输出结果的能力,与传统的搜索引擎功能具有一定的重合。

我们也看到,最近搜索引擎巨头谷歌动作频频,显然感受到了ChatGPT带来的压力。

据媒体报道,谷歌CEO Sundar Pichai参与了一系列探讨谷歌AI战略的会议,同时公司的研究、信任与安全等部门和团队,将被组织重整,旨在帮助开发和发布新的AI原型和产品。

谷歌还要求员工开发能够创建艺术品和其他图像的AI产品,对标的正是OpenAI的另一项产品DALL-E,一个可以根据书面文字生成图像的人工智能系统,目前已经吸引到超过300万用户。

报道还指出,谷歌管理层已经发布了“红色代码”警报。在硅谷,这就意味着拉响了“火警”。

谷歌摆出积极防御姿态的同时,关于ChatGPT会不会取代搜索引擎的讨论,也一再升温。

去年12月,摩根士丹利投行的首席分析师Brian Nowak在一份研报中提到,语言模型可能会占据市场份额,并破坏谷歌作为互联网用户入口的地位。

专栏作家Parmy Olson也撰文指出,相比谷歌搜索抓取十亿个网页内容编制索引,然后按照最相关的答案对其进行排名,包含链接列表来让你点击,ChatGPT可以直接基于它自己的搜索和信息综合的单一答案,回复流程更加简便。

不过就目前阶段而言,说ChatGPT可以直接取代搜索引擎,恐怕还为时尚早。

参考中国银河证券的观点,其认为有两点原因不能忽略:

第一,ChatGPT与传统搜索引擎的功能和优势并不相同。

搜索引擎是帮助人们做信息检索的,人们的检索行为会返回多条查询结果、准确率也较高,并且搜索引擎不会对信息做出判断,完全呈现结果供用户进一步筛选;

ChatGPT则是一个自然语言处理模型,用户输入单一指令,只能得到单一结果,以此来确保与用户对话过程的流畅性。

第二,二者的应用领域不同。

搜索引擎的信息库抓取信息快、信息库更新频率高、存量大,主要用于帮助用户快速查找匹配信息、找到感兴趣的信息,尝尝应用在文献检索、互联网搜索等领域;

而ChatGPT的语料库来源于离线数据,输出的文本存在虚假信息的可能,且吸纳新的知识需要对模型进行再训练和微调,这会导致训练成本和甄别成本上升,因此主要应用在人机对话、智能客服、智能问答等强逻辑性的自然语言交互领域。

除了这两点原因之外,ChatGPT还面临着信息老旧的问题。它并不会在网络上抓取实时信息,知识仅限于2021年之前学到的东西。

基于以上几点,短期之内,ChatGPT无法取代搜索引擎,但它可以作为当前搜索引擎服务的一种补充,也会对现有的搜索引擎公司产生一定的冲击,促进巨头间竞争。

相关文章:

为什么说ChatGPT还不是搜索引擎的对手

一 前言 1950年,英国科学家图灵在一篇论文中预言,人类有可能创造出具有真正智能的机器。 著名的「图灵测试」就此诞生:如果一台机器能够与人类展开对话,而不被辨别出其机器身份,那么称这台机器具有智能。 也是从那时…...

2308C++协程流程

参考 #include <常用> #include <协程> #include "简异中.cpp" //用来中文定义的.元<类 T>构 同步{共针<T>值;同步(共针<T>p):值(p){输出<<"构建同步"<<行尾;//.8}同步(常 同步&s):值(s.值){输出<<&…...

C#实现稳定的ftp下载文件方法

当使用C#实现稳定的FTP下载文件的方法时&#xff0c;我们可以使用FtpWebRequest类来执行FTP操作&#xff0c;并根据需要添加错误处理和重试机制。下面是一个示例代码&#xff1a; using System; using System.IO; using System.Net;public class FTPDownloader {private const…...

八股文之计算机网络

TCP/IP 网络模型有哪几层 该模型用来解决不同设备间的进程通信&#xff0c;就需要网络通信&#xff0c;该模型就应运而生。首先是应用层&#xff0c;我们所接触的App都是在这一层实现的&#xff0c;当不同的设备需要通信时&#xff0c;就需要把数据发给传输层&#xff0c;传输…...

kotlin 比较 let apply

let 和 apply 是 Kotlin 标准库中的两个非常有用的函数&#xff0c;它们用于在代码中实现更简洁和可读的操作。它们通常在函数式编程和链式调用中使用&#xff0c;以简化代码并提高可维护性。下面是关于这两个函数的详细解释&#xff1a; let let 函数是一个作用域函数&#…...

springboot跨域踩坑笔记

事情是这样的&#xff0c;我在进行前后端联调的时候&#xff0c;发送了跨域拦截 马上在spring项目中创建一个CorsConfig类 package com.example.demo.config;import org.springframework.context.annotation.Configuration; import org.springframework.web.servlet.config.an…...

基于STM32+FreeRTOS的四轴机械臂

目录 代码&#xff1a; 注释写的较少&#xff0c;但本文出现的代码都有注释&#xff0c;所以请直接在本文里看注释 项目概述&#xff1a; 一 准备阶段&#xff08;都是些废话&#xff09; 二 裸机测试功能 1.摇杆控制 接线&#xff1a; CubeMX配置&#xff1a; 代码 2…...

【C语言】三子棋游戏——超细教学

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;C语言 &#x1f525;该篇将结合之前的知识来实现 三子棋游戏。 目录&#xff1a; &#x1f31f;思路框架&#xff1a;测试游戏 &#x1f31f…...

redux的介绍、安装、三大核心与执行流程

redux的介绍、安装、三大核心与执行流程 一、redux的基本介绍二、redux的安装三、redux核心概念3.1 action3.2 reducer3.3 store 四、Redux代码执行流程五、加减案例练习 一、redux的基本介绍 redux中文官网Redux 是 React 中最常用的状态管理工具&#xff08;状态容器&#x…...

Redis 5环境搭建

一、环境搭建 如果是Centos8&#xff0c;yum 仓库中默认的 Redis版本就是5&#xff0c;直接yum install即可。如果是Centos7&#xff0c;yum 仓库中默认的 Redis版本是3系列&#xff0c;比较老~ 为了我们能在 Centos7中下载到 Redis5 首先要安装额外的软件源 sudo yum insta…...

stm32红绿灯源代码示例(附带Proteus电路图)

本代码不能直接用于红路灯&#xff0c;只是提供一个思路 #include "main.h" #include "gpio.h" void SystemClock_Config(void); void MX_GPIO_Init(void) {GPIO_InitTypeDef GPIO_InitStruct {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOB_CLK_ENAB…...

Qt与电脑管家4

折线图&#xff1a; #ifndef LINE_CHART_H #define LINE_CHART_H#include <QWidget> #include <QPainter> #include "circle.h" class line_chart : public QWidget {Q_OBJECT public:explicit line_chart(QWidget *parent nullptr); protected:void pa…...

使用css美化gradio界面

基本方法 在默认的前端页面中使用检查工具确定要修改的部分的选择器名称&#xff0c;然后在block_css中对其修改&#xff0c;并在启动网页时传入参数&#xff1a;with gr.Blocks(cssblock_css, thememy_theme) as demo: 禁止修改下拉框文字 input.border-none.svelte-c0u3f0…...

Flink流批一体计算(13):PyFlink Tabel API之SQL DDL

1. TableEnvironment 创建 TableEnvironment from pyflink.table import Environmentsettings, TableEnvironment# create a streaming TableEnvironmentenv_settings Environmentsettings.in_streaming_mode()table_env TableEnvironment.create(env_settings)# or create…...

java笔试手写算法面试题大全含答案

1.统计一篇英文文章单词个数。 public class WordCounting { public static void main(String[] args) { try(FileReader fr new FileReader("a.txt")) { int counter 0; boolean state false; int currentChar; while((currentChar fr.read()) ! -1) { i…...

点云平面拟合和球面拟合

一、介绍 In this tutorial we learn how to use a RandomSampleConsensus with a plane model to obtain the cloud fitting to this model. 二、代码 #include <iostream> #include <thread> #include <pcl/point_types.h> #include <pcl/common/io.…...

部署问题集合(十九)linux设置Tomcat、Docker,以及使用脚本开机自启(亲测)

前言 因为不想每次启动虚拟机都要手动启动一遍这些东西&#xff0c;所以想要设置成开机自启的状态 设置Tomcat开机自启 创建service文件 vi /etc/systemd/system/tomcat.service添加如下内容&#xff0c;注意修改启动脚本和关闭脚本的地址 [Unit] DescriptionTomcat9068 A…...

视觉SLAM:一直在入门,如何能精通,CV领域的绝境长城,

目录 前言 福利&#xff1a;文末有chat-gpt纯分享&#xff0c;无魔法&#xff0c;无限制 1 什么是SLAM&#xff1f; 2 为什么用SLAM&#xff1f; 3 视觉SLAM怎么实现&#xff1f; 4 前端视觉里程计 5 后端优化 6 回环检测 7 地图构建 8 结语 前言 上周的组会上&…...

【报错】yarn --version Unrecognized option: --version Error...

文章目录 问题分析解决问题 在使用 npm install -g yarn 全局安装 yarn 后,查看yarn 的版本号,报错如下 PS D:\global-data-display> yarn --version Unrecognized option: --version Error: Could...

二叉搜索树的(查找、插入、删除)

一、二叉搜索树的概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树: 1、若它的左子树不为空&#xff0c;则左子树上所有节点的值都小于根节点的值&#xff1b; 2、若它的右子树不为空&#xff0c;则右子树上所有节点的值都…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...