算法leetcode|37. 解数独(rust重拳出击)
文章目录
- 37. 解数独:
- 样例 1:
- 提示:
- 分析:
- 题解:
- rust
- go
- c++
- c
- python
- java
37. 解数独:
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.' 表示。
样例 1:

输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]解释:输入的数独如上图所示,唯一有效的解决方案如下所示:

提示:
board.length == 9board[i].length == 9board[i][j]是一位数字或者'.'- 题目数据 保证 输入数独仅有一个解
分析:
- 面对这道算法题目,二当家的陷入了沉思。
- 主要是如何存储行,列,以及3*3宫内出现过的值。
- 方法很多,集合,整形数组,布尔数组都可以,只有1-9,一共9个数,最优化的空间方式应该是仅仅用一个整形,然后用位运算。
题解:
rust
impl Solution {pub fn solve_sudoku(board: &mut Vec<Vec<char>>) {let mut line = vec![vec![false; 9]; 9];let mut column = vec![vec![false; 9]; 9];let mut block = vec![vec![vec![false; 9]; 3]; 3];let mut spaces = Vec::new();(0..9).for_each(|i| {(0..9).for_each(|j| {if board[i][j] == '.' {spaces.push((i, j));} else {let digit = board[i][j].to_digit(10).unwrap() as usize - 1;line[i][digit] = true;column[j][digit] = true;block[i / 3][j / 3][digit] = true;}});});fn dfs(board: &mut Vec<Vec<char>>, spaces: &Vec<(usize, usize)>, line: &mut Vec<Vec<bool>>, column: &mut Vec<Vec<bool>>, block: &mut Vec<Vec<Vec<bool>>>, pos: usize) -> bool {if pos == spaces.len() {return true;}let (i, j) = spaces[pos];for digit in 0..9 {if !line[i][digit] && !column[j][digit] && !block[i / 3][j / 3][digit] {line[i][digit] = true;column[j][digit] = true;block[i / 3][j / 3][digit] = true;board[i][j] = (digit as u8 + b'1') as char;if dfs(board, spaces, line, column, block, pos + 1) {return true;}line[i][digit] = false;column[j][digit] = false;block[i / 3][j / 3][digit] = false;}}return false;}dfs(board, &mut spaces, &mut line, &mut column, &mut block, 0);}
}
go
func solveSudoku(board [][]byte) {var line, column [9][9]boolvar block [3][3][9]boolvar spaces [][2]intfor i := 0; i < 9; i++ {for j := 0; j < 9; j++ {b := board[i][j]if b == '.' {spaces = append(spaces, [2]int{i, j})} else {digit := b - '1'line[i][digit] = truecolumn[j][digit] = trueblock[i/3][j/3][digit] = true}}}var dfs func(int) booldfs = func(pos int) bool {if pos == len(spaces) {return true}i, j := spaces[pos][0], spaces[pos][1]for digit := byte(0); digit < 9; digit++ {if !line[i][digit] && !column[j][digit] && !block[i/3][j/3][digit] {line[i][digit] = truecolumn[j][digit] = trueblock[i/3][j/3][digit] = trueboard[i][j] = digit + '1'if dfs(pos + 1) {return true}line[i][digit] = falsecolumn[j][digit] = falseblock[i/3][j/3][digit] = false}}return false}dfs(0)
}
c++
class Solution {
private:bool dfs(vector<vector<char>> &board, vector<pair<int, int>> &spaces, bool line[9][9], bool column[9][9], bool block[3][3][9], int pos) {if (pos == spaces.size()) {return true;}auto [i, j] = spaces[pos];for (int digit = 0; digit < 9; ++digit) {if (!line[i][digit] && !column[j][digit] && !block[i / 3][j / 3][digit]) {line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = true;board[i][j] = digit + '1';if (dfs(board, spaces, line, column, block, pos + 1)) {return true;}line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = false;}}return false;}
public:void solveSudoku(vector<vector<char>>& board) {bool line[9][9];bool column[9][9];bool block[3][3][9];vector<pair<int, int>> spaces;memset(line, false, sizeof(line));memset(column, false, sizeof(column));memset(block, false, sizeof(block));for (int i = 0; i < 9; ++i) {for (int j = 0; j < 9; ++j) {if (board[i][j] == '.') {spaces.emplace_back(i, j);}else {int digit = board[i][j] - '1';line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = true;}}}dfs(board, spaces, line, column, block, 0);}
};
c
bool dfs(char **board, int *spaces[81], int spacesSize, bool line[9][9], bool column[9][9], bool block[3][3][9], int pos) {if (pos == spacesSize) {return true;}int i = spaces[pos][0], j = spaces[pos][1];for (int digit = 0; digit < 9; ++digit) {if (!line[i][digit] && !column[j][digit] && !block[i / 3][j / 3][digit]) {line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = true;board[i][j] = digit + '1';if (dfs(board, spaces, spacesSize, line, column, block, pos + 1)) {return true;}line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = false;}}return false;
}void solveSudoku(char **board, int boardSize, int *boardColSize) {bool line[9][9];bool column[9][9];bool block[3][3][9];int *spaces[81];int spacesSize = 0;memset(line, 0, sizeof(line));memset(column, 0, sizeof(column));memset(block, 0, sizeof(block));for (int i = 0; i < 9; ++i) {for (int j = 0; j < 9; ++j) {if (board[i][j] == '.') {spaces[spacesSize] = malloc(sizeof(int) * 2);spaces[spacesSize][0] = i;spaces[spacesSize++][1] = j;} else {int digit = board[i][j] - '1';line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = true;}}}dfs(board, spaces, spacesSize, line, column, block, 0);
}
python
class Solution:def solveSudoku(self, board: List[List[str]]) -> None:"""Do not return anything, modify board in-place instead."""def dfs(pos: int) -> bool:if pos == len(spaces):return Truei, j = spaces[pos]for digit in range(9):if line[i][digit] == column[j][digit] == block[i // 3][j // 3][digit] == False:line[i][digit] = column[j][digit] = block[i // 3][j // 3][digit] = Trueboard[i][j] = str(digit + 1)if dfs(pos + 1):return Trueline[i][digit] = column[j][digit] = block[i // 3][j // 3][digit] = Falsereturn Falseline = [[False] * 9 for _ in range(9)]column = [[False] * 9 for _ in range(9)]block = [[[False] * 9 for _a in range(3)] for _b in range(3)]spaces = list()for i in range(9):for j in range(9):if board[i][j] == ".":spaces.append((i, j))else:digit = int(board[i][j]) - 1line[i][digit] = column[j][digit] = block[i // 3][j // 3][digit] = Truedfs(0)
java
class Solution {public void solveSudoku(char[][] board) {boolean[][] line = new boolean[9][9];boolean[][] column = new boolean[9][9];boolean[][][] block = new boolean[3][3][9];List<int[]> spaces = new ArrayList<int[]>();for (int i = 0; i < 9; ++i) {for (int j = 0; j < 9; ++j) {if (board[i][j] == '.') {spaces.add(new int[]{i, j});} else {int digit = board[i][j] - '1';line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = true;}}}dfs(board, spaces, line, column, block, 0);}private boolean dfs(char[][] board, List<int[]> spaces, boolean[][] line, boolean[][] column, boolean[][][] block, int pos) {if (pos == spaces.size()) {return true;}int[] space = spaces.get(pos);int i = space[0], j = space[1];for (int digit = 0; digit < 9; ++digit) {if (!line[i][digit] && !column[j][digit] && !block[i / 3][j / 3][digit]) {line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = true;board[i][j] = (char) (digit + '1');if (dfs(board, spaces, line, column, block, pos + 1)) {return true;}line[i][digit] = column[j][digit] = block[i / 3][j / 3][digit] = false;}}return false;}
}
非常感谢你阅读本文~
欢迎【点赞】【收藏】【评论】~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://le-yi.blog.csdn.net/ 博客原创~
相关文章:
算法leetcode|37. 解数独(rust重拳出击)
文章目录37. 解数独:样例 1:提示:分析:题解:rustgoccpythonjava37. 解数独: 编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则: 数字 1-9 在每一行只能出现…...
SpringBoot整合Dubbo
目录1、dubbo简介2、dubbo解决了什么问题3、环境准备4、项目搭建5、总结springboot整合feign可参考我另外一篇文章SpringBoot集成Feign 1、dubbo简介 Apache Dubbo 最初在 2008 年由 Alibaba 捐献开源,很快成为了国内开源服务框架选型的事实标准框架 ,…...
[软件工程导论(第六版)]第9章 面向对象方法学引论(课后习题详解)
文章目录1. 什么是面向对象方法学?它有哪些优点?2. 什么是“对象”?它与传统的数据有何异同?3. 什么是“类”?4. 什么是“继承”?5. 什么是模型?开发软件为何要建模?6. 什么是对象模…...
光学分辨率光声显微镜中基于深度学习的运动校正算法
在这项研究中,我们提出了一种基于深度学习的方法来校正光学分辨率光声显微镜 (OR-PAM) 中的运动伪影。该方法是一种卷积神经网络,它从具有运动伪影的输入原始数据建立端到端映射,以输出校正后的图像。首先,我们进行了仿真研究&…...
浅谈UG二次开发中使用的FindObject
一般我们在业务逻辑里想查找一个Object的时候,会调用FindObject、GetObject、NxObjectManager.Get,不管是上述哪种实现,都是在内存中找东西,找到了就返回对象,否则返回null,但不会触发加载。 这里我分别从建…...
贪心原理及刷题
更新中 概念 使用贪心需要满足,上一步的局部最优解能推出这一步的局部最优解,直到得到全局最优解 而dp这一步的局部最优,不一定来源上一步的局部最优,而可能与更早的解有关,同时dp转移方程的推导也比较复杂 122. 买卖股票的最佳时机 II - 力扣(LeetCode) 这道题是典…...
2023赏金计划:Coremail SRC漏洞征集与样本奖励火热进行中
赏金活动一:Coremail SRC漏洞奖励计划 01 活动背景 2023年1月,Coremail安全应急响应中心(Coremail SRC)正式上线启用,面向公众收集安全漏洞信息与安全情报。Coremail SRC旨在联合众多安全专家、白帽子研究员共同发现…...
简记:清理指定后缀名文件的 powerhsell 小脚本
清理指定后缀名文件的 powerhsell 小脚本jcLee95:https://blog.csdn.net/qq_28550263?spm1001.2101.3001.5343 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/129121074 1.介绍 相关工具代码 2.目…...
问题记录:mac系统偏好设置不展示mysql
Mac新系统升级(10.14.5)后未从appstore下载的软件在安装时会提示安装包已损坏之类的东东,这是因为没有打开“设置”—“安全与隐私”中的“任何来源”造成的,可是升级后的10.14.5却没有这个选项。 那么macOS 10.14.5以上允许任何…...
网络计划--时间参数的计算和优化
根据网络图的基本概念和原则绘制出网络图之后,我们可以计算网络图中有关的时间参数,主要目的是找出关键路线,为网络计划的优化、调整和执行提供明确的时间概念。如下图中从始点①到终点⑧共有4条路线,可以分别计算出每条路线所需的…...
1.2.7存储结构-磁盘管理:磁盘移臂调度算法、先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描算法(SCAN)、循环扫描(CSCAN)
1.2.7存储结构-磁盘管理:磁盘移臂调度算法、先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描算法(SCAN)、循环扫描(CSCAN)先来先服务(FCFS)最短寻…...
2022年AI顶级论文 —生成模型之年(上)
CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 过去十年来,人工智能技术在持续提高和飞速发展,并不断冲击着人类的认知。 2012年,在ImageNet图像识别挑战赛中,一种神经网络模型(AlexNet&…...
Linux下程序调试的方法【GDB】GDB相关命令和基础操作(命令收藏)
目录 1、编译 2、启动gdb调试 2.1 直接运行 2.2 运行gdb后使用run命令 2.3 调试已运行的程序 3、图形界面提示 4、调试命令 1、查看源码 2、运⾏程序/查看运⾏信息 3、设置断点 5、单步/跳步执⾏ 6、分割窗口 7、其他命令 8、相关参数 1、编译 在编译时要加上-g选…...
使用frp配置内网机器访问
frp简介 frp 是一个开源、简洁易用、高性能的内网穿透和反向代理软件,支持 tcp, udp, http, https等协议。frp 项目官网是 https://github.com/fatedier/frp,软件下载地址为https://github.com/fatedier/frp/releases frp工作原理 服务端运行…...
简述7个流行的强化学习算法及代码实现!
目前流行的强化学习算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。这些算法已被用于在游戏、机器人和决策制定等各种应用中,并且这些流行的算法还在不断发展和改进,本文我们将对其做一个简单的介绍。1、Q-learningQ-learning:Q-…...
朗润国际期货招商:地方政府工作报告中对于促进消费
地方政府工作报告中对于促进消费 北京:把恢复和扩大消费摆在优先位置。加紧推进国际消费中心城市建设、深化商圈改造提升行动、统筹推进物流基地规划建设,强化新消费地标载体建设、试点建设80个“一刻钟便民生活圈”,提高生活性服务重品质。…...
前端性能优化的一些技巧(90% chatGpt生成)
终于弄好了chatGpt的账号,赶紧来体验一波。先来一波结论,这篇文章的主要内容来源,90%是用chatGpt生成的。先上chatGpt的生成的结果:作为一名懒惰的程序员,chatGpt会帮助我变得更懒...,好了下面开始文章的正…...
[软件工程导论(第六版)]第8章 维护(复习笔记)
文章目录8.1 软件维护的定义8.2 软件维护的特点8.3 软件维护过程8.4 软件的可维护性8.5 预防性维护8.6 软件再工程过程维护的基本任务:保证软件在一个相当长的时期能够正常运行软件工程的主要目的就是要提高软件的可维护性,减少软件维护所需要的工作量&a…...
Python - 绘制人体生物节律
文章目录项目说明关于人体生物节律用到的技术代码实现获取每月有多少天计算每天到生日过了多少天计算节律绘图结果项目说明 这里仿照 http://www.4qx.net/The_Human_Body_Clock.php 做一个人体生物节律的计算和展示 关于人体生物节律 百度/维基百科 解释 https://zh.wikiped…...
【NVMEM子系统】二、NVMEM驱动框架
个人主页:董哥聊技术我是董哥,嵌入式领域新星创作者创作理念:专注分享高质量嵌入式文章,让大家读有所得!文章目录1、前言2、驱动框架3、源码目录结构4、用户空间下的目录结构1、前言 NVMEM SUBSYSTEM,该子系…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
