【C++修炼之路】21.红黑树封装map和set
每一个不曾起舞的日子都是对生命的辜负
红黑树封装map和set
- 前言
- 一.改良红黑树的数据域结构
- 1.1 改良后的结点
- 1.2 改良后的类
- 二. 封装的set和map
- 2.1 set.h
- 2.2 map.h
- 三. 迭代器
- 3.1 迭代器封装
- 3.2 const迭代器
- 四.完整代码实现
- 4.1 RBTree.h
- 4.2 set.h
- 4.3 map.h
- 4.4 Test.cpp
前言
上一节中,说到了红黑树的实现,并且已经知道map和set的底层共用了同一套红黑树的结构。但这样就会出现一个问题,map的数据域和set不一样,比较大小的方式自然也就不一样。因此上一篇中的红黑树还需要做出一些改变才能用来实现map和set。
一.改良红黑树的数据域结构
对于如何设计针对map、set的红黑树结构,看源码的实现无疑是最好的方式:
对于源码的实现,我们知道set是<k,k>的键值对,但是在使用时却只显示一个k,map是<k,value>的键值对,通过观察源码发现,map的节点结构为
rb_tree<key_type, value_type>
,但发现其设计方式很特殊,value_type是pair<const Key, T>的重命名,也就是说,map节点结构的key_type并不作为数据域,value_type单一类型就充当了数据域,而key_type实际上可以充当查找的作用。因此,下面改良红黑树就采用这种方式:一个类型T作为结点的全部数据域。
1.1 改良后的结点
enum Color//颜色采用枚举,但STL库采用的是特殊的bool值,后续会看
{RED,//0BLACK//1
};template<class T>
struct RBTreeNode
{T _data;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Color _col;RBTreeNode(const T& data):_data(data), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}};
与之前的双参数<class K, class V>相比,改良之后的T作为了全部的数据域,即T也可以代表pair类型。
1.2 改良后的类
在前言中提到,比较方式也是一个头疼的问题,这个时候就可以自己封装一个比较方式,即以仿函数的形式进行比较。
由于只有比较方式进行了改变,因此除了insert其他的都没有变化,所以下面只展示insert
enum Color//颜色采用枚举,但STL库采用的是特殊的bool值,后续会看
{RED,//0BLACK//1
};template<class T>
struct RBTreeNode
{T _data;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Color _col;RBTreeNode(const T& data):_data(data), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}};// set->RBTree<K, K, SetKeyOfT> _t;
// map->RBTree<K, pair<const K, V>, MapKeyOfT> _t;
template<class K, class T, class KeyOfT>//新增的KeyOfT就是仿函数
class RBTree
{typedef RBTreeNode<T> Node;
public:bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;//根节点为黑色return true;}KeyOfT kot;//仿函数Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data);cur->_col = RED;//重要,插入的结点初始化成红色if (kot(parent->_data) < kot(data)){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent && parent->_col == RED)//如果父亲的颜色为红,才需要去处理{Node* grandfather = parent->_parent;//找到祖父才能找到叔叔if (parent == grandfather->_left){Node* uncle = grandfather->_right;//看叔叔颜色//情况1:uncle存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//情况2或3:不用考虑叔叔的问题,即叔叔为空还是为黑{if (cur == parent->_left)//情况2{// g// p// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else//情况3{// g// p// cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else//与上述代码的左右反过来了而已,步骤一样但左右相反。{Node* uncle = grandfather->_left;//情况1if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//情况2和3{// g// p// cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}}}}_root->_col = BLACK;return true;}
private:Node* _root = nullptr;
};
二. 封装的set和map
以仿函数封装就可以完成比较。
2.1 set.h
#pragma once
#include"RBTree.h"namespace cfy
{template<class K>class set{struct SetKeyOfT//仿函数{const K& operator()(const K& key){return key;}};public:bool insert(const K& key){return _t.Insert(key);}private:RBTree<K, K, SetKeyOfT> _t;};void test_set(){int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };set<int> s;for (auto e : a){s.insert(e);}}
}
2.2 map.h
#pragma once
#include"RBTree.h"
namespace cfy
{template<class K, class V>class map{struct MapKeyOfT//仿函数{const K& operator()(const pair<const K, V>& kv){return kv.first;}};public:bool insert(const pair<const K, V>& kv){return _t.Insert(kv);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};void test_map(){int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };map<int, int> m;for (auto e : a){m.insert(make_pair(e, e));}}
}
三. 迭代器
需要将有关迭代器的功能都封装起来,这在之前的vector、list模拟实现时已经了解过。对于map和set的迭代器,重要的函数重载就是++和–了。为了map和set能够共用这一套迭代器,因此将其封装在RBTree里。
3.1 迭代器封装
迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代器,需要考虑以前问题:begin()与end()
STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?
能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行–操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置:
但由于我们上一届中设计的RBTree没有头结点这个结构,因此我们也就不与STL的实现方式完全一样,end()就直接设置为nullptr。
//迭代器
template<class T>
struct __RBTreeIterator
{typedef RBTreeNode<T> Node;typedef __RBTreeIterator<T> Self;//迭代器类进行typedefNode* _node;__RBTreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}//迭代器++//迭代器--//上面两个都拿出来在下面bool operator!=(const Self& s){return _node != s._node;}};
一. 对于++,有这么两种选择:
- 如果右树不为空,则找到右树的最左节点。
- 如果右树为空,则找到孩子是父亲的左孩子的那个祖先。
Self& operator++()//迭代器返回的还是迭代器
{if (_node->_right)//1.右不为空,找到右子树的最左节点{Node* min = _node->_right;while (min->_left){min = min->_left;}_node = min;}else//2.右为空,则找祖先:孩子是父亲的左的那个祖先{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = cur->_parent;parent = parent->_parent;}_node = parent;}return *this;
}
二. 对于–,有这么两种选择:(事实上思路就是与++相反)
- 如果左树不为空,则找到左树的最右结点(也就是最大结点)。
- 如果左树为空,则找到孩子是父亲的右孩子的那个祖先。
Self& operator--()
{if (_node->_left){Node* max = _node->_left;while (max->_right)//max一定存在,因此不需要写出max条件{max = max->_right;}_node = max;}else{Node* cur = _node;Node* parent = _node->_parent;while (parent && cur == parent->_left){cur = cur->_parent;parent = parent->_parent;}_node = parent;}return *this;
}
3.2 const迭代器
如果是const迭代器,那可以在迭代器类中多加上两个模板参数:T&, T*
偏特化,当然实际上是Ref,Ptr
的全特化;由于set不能修改,因此set的普通迭代器和const迭代器都应该是const类型,但map的value可以修改,因此我们就需要在RBTree中把普通迭代器和const迭代器均实现出来。此外,对于map来讲,需要实现operator[]的重载,因此我们插入函数返回的值也应该从bool变成pair类型,这样才便于在operator[]重载中进行操作。由于代码繁琐,且需要处理一些细节问题,因此代码的注释将会就那些进行解释,看下面代码就可以了。
四.完整代码实现
提示:需要注意细节问题,如普通迭代器可以赋值给const迭代器的原理。
4.1 RBTree.h
#pragma onceenum Color//颜色采用枚举,但STL库采用的是特殊的bool值,后续会看
{RED,//0BLACK//1
};template<class T>
struct RBTreeNode
{T _data;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Color _col;RBTreeNode(const T& data):_data(data), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}};//迭代器
// class< T, T&, T*>
template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{typedef RBTreeNode<T> Node;typedef __RBTreeIterator<T, Ref, Ptr> Self;//迭代器类进行typedef//如果Ref和Ptr都是非const,则下面与上面没区别,但如果是const,则下面仍是非const,因此可以const迭代器可以赋值给非const就是因为下面的这个,就是一个构造typedef __RBTreeIterator<T, T&, T*> iterator;//满足普通迭代器可以赋值给const迭代器Node* _node;__RBTreeIterator(Node* node):_node(node){}// 普通迭代器的时候,他是拷贝构造// const迭代器的时候,他是构造,支持用普通迭代器构造const迭代器__RBTreeIterator(const iterator& s)//加上这个,就满足普通迭代器赋值给const迭代器:_node(s._node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}Self& operator++()//迭代器返回的还是迭代器{if (_node->_right)//1.右不为空,找到右子树的最左节点{Node* min = _node->_right;while (min->_left){min = min->_left;}_node = min;}else//2.右为空,则找祖先:孩子是父亲的左的那个祖先{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = cur->_parent;parent = parent->_parent;}_node = parent;}return *this;}Self& operator--(){if (_node->_left){Node* max = _node->_left;while (max->_right)//max一定存在,因此不需要写出max条件{max = max->_right;}_node = max;}else{Node* cur = _node;Node* parent = _node->_parent;while (parent && cur == parent->_left){cur = cur->_parent;parent = parent->_parent;}_node = parent;}return *this;}bool operator!=(const Self& s) const{return _node != s._node;}};// set->RBTree<K, K, SetKeyOfT> _t;
// map->RBTree<K, pair<const K, V>, MapKeyOfT> _t;
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef __RBTreeIterator<T, T&, T*> iterator;typedef __RBTreeIterator<T, const T&, const T*> const_iterator;iterator begin(){Node* left = _root;while (left && left->_left){left = left->_left;}return iterator(left);}iterator end(){return iterator(nullptr);}const_iterator begin() const{Node* left = _root;while (left && left->_left){left = left->_left;}return const_iterator(left);}const_iterator end() const{return const_iterator(nullptr);}pair<iterator, bool> Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;//根节点为黑色return make_pair(iterator(_root), true);}KeyOfT kot;//仿函数Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return make_pair(iterator(cur), false);}}cur = new Node(data);Node* newnode = cur;//加上这个是为了pair返回值时return的时候需要返回,因为cue会变,因此记录一下这个结点cur->_col = RED;//重要,插入的结点初始化成红色if (kot(parent->_data) < kot(data)){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent && parent->_col == RED)//如果父亲的颜色为红,才需要去处理{Node* grandfather = parent->_parent;//找到祖父才能找到叔叔if (parent == grandfather->_left){Node* uncle = grandfather->_right;//看叔叔颜色//情况1:uncle存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//情况2或3:不用考虑叔叔的问题,即叔叔为空还是为黑{if (cur == parent->_left)//情况2{// g// p// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else//情况3{// g// p// cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else//与上述代码的左右反过来了而已,步骤一样但左右相反。{Node* uncle = grandfather->_left;//情况1if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//情况2和3{// g// p// cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}}}}_root->_col = BLACK;return make_pair(iterator(newnode), true);}//旋转代码和AVL一样,只是去掉了平衡因子void RotateL(Node* parent)//左单旋{//1.记录subR, subRLNode* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)//subRL不为空则需要连接到parent{subRL->_parent = parent;}Node* ppNode = parent->_parent;//记录保存subR->_left = parent;parent->_parent = subR;if (ppNode == nullptr)//说明根节点变化{_root = subR;_root->_parent = nullptr;}else//如果是局部子树{//判断ppNode之前是左连接还是右连接if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}}void RotateR(Node* parent)//右单旋{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}Node* ppNode = parent->_parent;subL->_right = parent;parent->_parent = subL;if (ppNode == nullptr){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}void Inorder(){_Inorder(_root);}bool IsBalance()//检查是否为红黑树结构{if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}int ref = 0;Node* left = _root;while (left){if (left->_col == BLACK){++ref;}left = left->_left;}//遍历这棵树,就好了,检查是否存在连续的红结点。//检查父亲,因为孩子不一定有,但是一定有父亲return Check(_root, 0, ref);}private:bool Check(Node* root, int blackNum, int ref){if (root == nullptr){if (blackNum != ref){cout << "违反规则:一条路径上的黑色节点数量不同" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "违反规则,出现连续红色结点" << endl;}if (root->_col == BLACK){++blackNum;}return Check(root->_left, blackNum, ref)&& Check(root->_right, blackNum, ref);}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_Inorder(root->_right);}Node* _root = nullptr;
};
4.2 set.h
#pragma once
#include"RBTree.h"namespace cfy
{template<class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public://加上typename是由于没有实例化的模板不能进行typedef。由于不能修改,因此均用consttypedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;iterator begin() const{return _t.begin();//_t.begin()是普通迭代器,iterator是const,因此需要修改}iterator end() const{return _t.end();}pair<iterator, bool> insert(const K& key){//直接return会造成const与非const的类型不匹配//因为set的iterator默认就是const,但return的并不是const//因此需要如下修正:pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(key);return pair<iterator, bool>(ret.first, ret.second);}private:RBTree<K, K, SetKeyOfT> _t;};void test_set(){int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };set<int> s;for (auto e : a){s.insert(e);}set<int>::iterator it = s.begin();while (it != s.end()){//*it += 10;//set这里不能被修改,因此const迭代器统一cout << *it << " ";++it;}cout << endl;for (auto& e : s){cout << e << " ";}cout << endl;}
}
4.3 map.h
#pragma once
#include"RBTree.h"
namespace cfy
{template<class K, class V>class map{struct MapKeyOfT{const K& operator()(const pair<const K, V>& kv){return kv.first;}};public://加上typename是由于没有实例化的模板不能进行typedef。typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin() const{return _t.begin();}const_iterator end() const{return _t.end();}pair<iterator, bool> insert(const pair<const K, V>& kv){return _t.Insert(kv);}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};void test_map(){int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };map<int, int> m;for (auto e : a){m.insert(make_pair(e, e));}map<int, int>::iterator it = m.begin();while (it != m.end()){//it->first++; 经过const就不能修改了it->second++;//允许被修改cout << it->first << ":" << it->second << endl;++it;}cout << endl;//map统计水果操作的次数string arr[] = { "苹果", "西瓜", "香蕉", "草莓", "西瓜","苹果", "苹果","西瓜","苹果", "香蕉", "苹果", "香蕉" };map<string, int> countMap;for (auto& e : arr){countMap[e]++;}for (const auto& kv : countMap)//注意加引用,不给就是拷贝构造,代价大{cout << kv.first << ":" << kv.second << endl;}}
}
4.4 Test.cpp
#include<iostream>
#include<map>
#include<set>
using namespace std;
#include"RBTree.h"
#include"Map.h"
#include"Set.h"
int main()
{cfy::test_set();cfy::test_map();return 0;
}
相关文章:

【C++修炼之路】21.红黑树封装map和set
每一个不曾起舞的日子都是对生命的辜负 红黑树封装map和set前言一.改良红黑树的数据域结构1.1 改良后的结点1.2 改良后的类二. 封装的set和map2.1 set.h2.2 map.h三. 迭代器3.1 迭代器封装3.2 const迭代器四.完整代码实现4.1 RBTree.h4.2 set.h4.3 map.h4.4 Test.cpp前言 上一节…...
下载ojdbc14.jar的10.2.0.1.0版本的包
一、首先要有ojdbc14.jar包 没有的可以去下载一个,我的是从这里下载的ojdbc14.jar下载_ojdbc14.jar最新版下载[驱动包软件]-下载之家, 就是无奈关注了一个公众号,有的就不用下了。 二、找到maven的本地仓库的地址 我的地址在这里D:\apach…...

关于欧拉角你需要知道几个点
基础理解,参照:https://www.cnblogs.com/Estranged-Tech/p/16903025.html 欧拉角、万向节死锁(锁死)理解 一、欧拉角理解 举例讲解 欧拉角用三次独立的绕确定的轴旋转角度来表示姿态。如下图所示 经过三次旋转,旋…...

git ssh配置
ssh配置 执行以下命令进行配置 git config --global user.name “这里换上你的用户名” git config --global user.email “这里换上你的邮箱” 执行以下命令生成秘钥: ssh-keygen -t rsa -C “这里换上你的邮箱” 执行命令后需要进行3次或4次确认。直接全部回车就…...

Linux进程概念(三)
环境变量与进程地址空间环境变量什么是环境变量常见环境变量环境变量相关命令环境变量的全局属性PWDmain函数的三个参数进程地址空间什么是进程地址空间进程地址空间,页表,内存的关系为什么存在进程地址空间环境变量 什么是环境变量 我们所有写的程序都…...

新手福利——x64逆向基础
一、x64程序的内存和通用寄存器 随着游戏行业的发展,x32位的程序已经很难满足一些新兴游戏的需求了,因为32位内存的最大值为0xFFFFFFFF,这个值看似足够,但是当游戏对资源需求非常大,那么真正可以分配的内存就显得捉襟…...
虚幻c++中的细节之枚举类型(enum)
文章目录前言一、原生c的枚举类型关键字classint8 - 枚举的基础类型(underlying type)二、枚举类型的灵活运用位运算枚举循环遍历三、虚幻风格的枚举类型UENUMUMETATEnumAsByte总结前言 虚幻引擎中的代码部分实现了一套反射机制,为c代码带了…...
判断某个字符串在另一个字符串中的个数
/** * 用于判断字符串中字符的个数 * * param str1 原字符串 * param str2 需要判断的字符 * return 返回有几个 */ private int getCount(String str1, String str2) { //获取两个字符串的长度 int oneLength str1.length(); int toLength str2.length(); //定义两个整数&am…...

测试人员如何运用好OKR
在软件测试工作中是不是还不知道OKR是什么?又或者每次都很害怕写OKR?或者总觉得很迷茫,不知道目标是什么? OKR 与 KPI 的区别 去年公司从KPI换OKR之后,我也有一段抓瞎的过程,然后自己找了两本书看,一本是《OKR工作法》…...

CentOS7 Hive2.3.9 安装部署(mysql 8.0)
一、CentOS7安装MySQL数据库 查询载mariadb rpm -qa | grep mariadb卸载mariadb rpm -e --nodeps [查询出来的内容]安装wget为下载mysql准备 yum -y install wget在tools目录下执行以下命令,下载MySQL的repo源: wget -P /tools/ https://dev.mysql.…...
【PTA Advanced】1142 Maximal Clique(C++)
目录 题目 Input Specification: Output Specification: Sample Input: Sample Output: 思路 代码 题目 A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique …...
1. MySQL在金融互联网行业的企业级安装部署
这里写目录标题 1. 版本介绍示例2.安装MySQL规范(建议二进制)2.1 安装方式2.2 安装用户2.3 目录规范3.二进制安装3.1 操作系统配置3.2 MySQL 5.7.33 安装部署2.3 MySQL8.0.27安装2.4 源码安装(了解 )3.多实例部署及注意事项3.1 多实例概念3.2 多实例安装3.3 多实例第二种方式…...

【C++修炼之路】19.AVL树
每一个不曾起舞的日子都是对生命的辜负 AVL树前言:一.AVL树的概念二.AVL树的结构2.1 AVL树节点的定义2.2 AVL树的结构2.3 AVL树的插入2.4 AVL树的验证2.5 AVL树的删除(了解)三.AVL树的旋转(重要)3.1 左单旋3.2 右单旋3.3 左右双旋3.4 右左双旋…...

项目管理工具dhtmlxGantt甘特图入门教程(十):服务器端数据集成(下)
这篇文章给大家讲解如何利用dhtmlxGantt在服务器端集成数据。 dhtmlxGantt是用于跨浏览器和跨平台应用程序的功能齐全的Gantt图表,可满足应用程序的所有需求,是完善的甘特图图表库 DhtmlxGantt正版试用下载(qun 764149912)http…...
LeetCode 793. 阶乘函数后 K 个零
f(x) 是 x! 末尾是 0 的数量。回想一下 x! 1 * 2 * 3 * ... * x,且 0! 1 。 例如, f(3) 0 ,因为 3! 6 的末尾没有 0 ;而 f(11) 2 ,因为 11! 39916800 末端有 2 个 0 。 给定 k,找出返回能满足 f(x) …...

maven打包顺序与jvm类加载顺序
背景:一次dev测试过程中,发现代码中关于jsr303的校验失效,校验类如下,会报一个莫名其妙的运行时错误;遂进行排查。import javax.validation.constraints.NotBlank;Data Accessors(chain true) public class Demo {Not…...

④ 链表
24. 两两交换链表中的节点 题目链接:https://leetcode.cn/problems/swap-nodes-in-pairs/ 注意点: 遍历链表的时候什么时候截止(避免空指针异常或无限死循环的问题)? 节点数量为偶数或链表为空时,cur.ne…...

小孩扁桃体肿大3度能自愈吗?6岁小孩扁桃体肥大怎么治效果好?
12月7日,四川眉山市民唐先生说,他刚出生的儿子在妇产医院分娩中心住了20天后感染了败血症。据唐先生介绍,哈子出院时各项指标正常。他在分娩中心住了半个月左右,孩子喝牛奶很生气,第二天就开始发烧了。同一天ÿ…...

【C++提高编程】C++全栈体系(二十二)
C提高编程 第三章 STL - 常用容器 五、stack容器 1. stack 基本概念 概念:stack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口 栈中只有顶端的元素才可以被外界使用,因此栈不允许有遍历行为 栈中进入数据称为 — 入…...

linux系统编程2--网络编程socket知识
在linux系统编程中网络编程是使用socket(套接字),socket这个词可以表示很多概念:在TCP/IP协议中,“IP地址TCP或UDP端口号”唯一标识网络通讯中的一个进程,“IP地址端口号”就称为socket。在TCP协议中&#…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!
目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...
React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构
React 实战项目:微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇!在前 29 篇文章中,我们从 React 的基础概念逐步深入到高级技巧,涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...