当前位置: 首页 > news >正文

红外/可见光图像配准融合

红外/可见光图像配准融合

  根据文献【1】,对于平行光轴的红外可见光双目配置进行图像配准,主要的限制是图像配准只是对特定的目标距离(Dtarget)有效。并排配置的配准误差 δx(以像素表示)的数学表达式为:

在这里插入图片描述

   其中f为焦距,lpix为像素大小,dc为基线长度。Doptimal是目标距离,即图像对齐误差为0。如果光轴平行,即Doptimal=无穷远,只有目标物体在相对相机很远的位置将会精确对齐,对于距离较近(Dtarget<无穷远)将会出现配准误差。
图像融合流程:
   图像融合框架如下图:

在这里插入图片描述

  其中标定方法采用的是OpenCV中的标定方法,只是标定板有所不同。需要注意的是图像尺度因子及红外相对可见光图像的偏移。

(1)图像尺度因子
  由于红外和可见光的焦距不一样,导致空间物体在两种图像上成像大小不一样,同时,使用的红外/可见光硬件系统光心在Y方向上存在偏差,即使根据焦距大小对图像进行缩放也并不能使得同一物体在不同图像上的成像大小相同。

在这里插入图片描述

  本次采用的方法是计算标定板两两圆心之间的在红外和可见光图像间的像素差,得到图像的缩放比例,将空间物体在两种图像上的尺寸统一。

在这里插入图片描述

  其中ThermalPoint和VisiblePoint为圆心n红外和可见光图像上的x或者y像素坐标值。根据求得的缩放因子,即可将空间物体在红外和可见光图像的尺寸统一,测试结果将在融合部分给出。
在这里插入图片描述

(2)红外相对可见光图像的偏移
  本次红外和可见光的原始大小分别为:640512,19201080,将红外和可见光图像缩放到统一大小之后,将小尺寸的红外图像移动到可见光图像上需要知道偏移距离(x,y)。采用的方法为:根据标定板中圆形的坐标位置在红外和可见光图像的像素坐标位置,计算对应点的像素差,则可将红外与可见光像素对齐,公式如下。

在这里插入图片描述

  X和Y分别为同一个圆心分别在红外和可见光图像中的像素坐标值。但是由于缺少深度信息,上述求出的偏移数据只能将空间距离与标定板距离接近的物体对齐,即假设标定板是在1.5m处求出的偏移距离,则使用该参数对于处于同样距离的空间物体,对齐误差为0,而对于大于或小于1.5m距离的物体,存在偏差,根据参考文献,当最佳对齐(对齐误差为0)位置为50m时,位于其他位置的物体的对齐误差如下表所示:

在这里插入图片描述

  从表中可以看出,当在50m处的对齐误差为0时,对于物体在0~20m范围内,误差从4pixel到小于1piexl。而对于20m到无穷远处的物体,对齐误差始终在1piexl以内。
(3)对齐精度分析
硬件平台参数:

在这里插入图片描述

  对于该硬件平台,根据公式(1),当Doptimal=50m,对距离相机25m处的物体在图像上的对齐误差:

在这里插入图片描述

  即如果应用场景的可接受对齐误差为±1piexl,对于该设备的有效目标距离为25m到无限远。匹配误差的数学表达式(公式1)表明,除了目标距离和最佳匹配距离,匹配误差还与双目的基线(dc),像素大小(lpix)和焦距(f)有关。上述表明,对于相同的目标距离,将相机配置为大的视场角(短焦距)对齐误差将会变小。
(4)测试结果
  由于对于远距离下利用标定板求图像的偏移距离存在难度,为了简化测试,本次测试采集了一组人在相对相机不同距离下的一组图片,对其进行图像对齐,下表为测试结果:
在这里插入图片描述

  测试数据中,人与相机的距离从6m~48m之间,每6m采集一组图像,之后通过手动的方法将红外和可见光图像进行对齐,在通过反复调整偏移参数后,获取了在上述偏移距离参数。从中可以看出,当物体距离大于12m之后,x方向的偏移基本保持不变,而y方向上,偏移参数的变化区间为325,322。

实验结果:

  • 实验结果(1)
    在这里插入图片描述
  • 实验结果(2)

在这里插入图片描述

  • 实验结果(3)
    在这里插入图片描述

参考文献:

【1】St-Laurent L, Prévost D, Maldague X. Fast and accurate calibration-based thermal/colour sensors registration[J]. Quantitative Infrared Thermography QIRT, 2010.

从博客园搬运过来,以更好的记录所学。
博客园参考

相关文章:

红外/可见光图像配准融合

红外/可见光图像配准融合 根据文献【1】&#xff0c;对于平行光轴的红外可见光双目配置进行图像配准&#xff0c;主要的限制是图像配准只是对特定的目标距离&#xff08;Dtarget&#xff09;有效。并排配置的配准误差 δx&#xff08;以像素表示&#xff09;的数学表达式为&…...

更高效稳定 | 基于ACM32 MCU的编程直流电源应用方案

随着电子设备的多样化发展&#xff0c;面对不同的应用场景&#xff0c;需要采用特定的供电电源。因此&#xff0c;在电子产品的开发测试过程中&#xff0c;必不可少使用编程直流电源来提供测试电压&#xff0c;协助完成初步的开发测试过程。 编程直流电源概述 编程直流电源结构…...

postgresql创建一个只读账户指定数据库

要在 PostgreSQL 中创建一个只读账户&#xff0c;您可以按照以下步骤进行操作&#xff1a; 1. **登录到 PostgreSQL&#xff1a;** 使用具有足够权限的管理员账户&#xff08;通常是 "postgres" 用户&#xff09;连接到 PostgreSQL 数据库。 2. **创建只读账户&…...

CSDN编程题-每日一练(2023-08-25)

CSDN编程题-每日一练&#xff08;2023-08-25&#xff09; 一、题目名称&#xff1a;影分身二、题目名称&#xff1a;小鱼的航程(改进版)三、题目名称&#xff1a;排查网络故障 一、题目名称&#xff1a;影分身 时间限制&#xff1a;1000ms内存限制&#xff1a;256M 题目描述&am…...

前端面试:【前端工程化】构建工具Webpack、Parcel和Rollup

嗨&#xff0c;亲爱的前端开发者&#xff01;在现代Web开发中&#xff0c;前端工程化变得愈发重要。构建工具如Webpack、Parcel和Rollup帮助我们自动化任务、管理依赖、优化性能等。本文将深入探讨这三个前端构建工具&#xff0c;帮助你了解它们的优点和用途。 1. Webpack&…...

大型企业是否有必要进行数字化转型?

在数字化、信息化、智能化蓬勃发展的今天&#xff0c;初创公司可以很轻易的布局规划数字化发展的路径。而对于大型企业而言&#xff0c;其已经形成了较为成熟稳固的业务及组织架构&#xff0c;是否还有必要根据自身行业发展特点寻求数字化转型&#xff1f;&#xff08;比如制造…...

05有监督学习——神经网络

线性模型 给定n维输入&#xff1a; x [ x 1 , x 1 , … , x n ] T x {[{x_1},{x_1}, \ldots ,{x_n}]^T} x[x1​,x1​,…,xn​]T 线性模型有一个n维权重和一个标量偏差: w [ w 1 , w 1 , … , w n ] T , b w {[{w_1},{w_1}, \ldots ,{w_n}]^T},b w[w1​,w1​,…,wn​]T,b 输…...

JavaWeb_LeadNews_Day7-ElasticSearch, Mongodb

JavaWeb_LeadNews_Day7-ElasticSearch, Mongodb elasticsearch安装配置 app文章搜索创建索引库app文章搜索思路分析具体实现 新增文章创建索引思路分析具体实现 MongoDB安装配置SpringBoot集成MongoDB app文章搜索记录保存搜索记录思路分析具体实现 查询搜索历史删除搜索历史 搜…...

redux中间件理解,常见的中间件,实现原理。

文章目录 一、Redux中间件介绍1、什么是Redux中间件2、使用redux中间件 一、Redux中间件介绍 1、什么是Redux中间件 redux 提供了类似后端 Express 的中间件概念&#xff0c;本质的目的是提供第三方插件的模式&#xff0c;自定义拦截 action -> reducer 的过程。变为 actio…...

麒麟系统上安装 MySQL 8.0.24

我介绍一下在麒麟系统上安装 MySQL 8.0.24 的详细步骤&#xff0c;前提是您已经下载了 mysql-8.0.24-linux-glibc2.12-x86_64.tar.xz 安装包。其实安装很简单&#xff0c;但是有坑&#xff0c;而且问题非常严重&#xff01;由于麒麟系统相关文章博客较少&#xff0c;导致遇到了…...

vue 展开和收起

效果图 代码块 <div><span v-for"(item,index) in showHandleList" :key"item.index"><span>{{item.emailFrom}}</span></span><span v-if"this.list.length > 4" click"showAll !showAll">{…...

限制立方样条(RCS)中的P for overall和P for nonlinear的计算

最近不少人私信我&#xff0c;说有些SCI文章报了两个P值一个是P for overall,一个是P for nonlinear,就像下图这样&#xff0c;问我P for overall怎么计算。 P for overall我也不清楚是什么&#xff0c;有些博主说这个是总效应的P值&#xff0c;但是我没有找到相关出处。但是怎…...

vue3+ts引入echarts并实现自动缩放

第一种写法&#xff08;不支持随页面大小变化而缩放&#xff09; 统一的HTML页面 <div class"content_box" ref"barChart" id"content_box"></div>TS语法 <script setup lang"ts">import * as echarts from echar…...

Compressor For Mac强大视频编辑工具 v4.6.5中文版

Compressor for Mac是苹果公司推出的一款视频压缩工具&#xff0c;可以将高清视频、4K视频、甚至是8K视频压缩成适合网络传输或存储的小文件。Compressor支持多种视频格式&#xff0c;包括H.264、HEVC、ProRes和AVC-Intra等&#xff0c;用户可以根据需要选择不同的压缩格式。 …...

maven工程的目录结构

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html maven工程的目录结构&#xff1a; 在maven工程的根目录下面&#xff0c;是pom.xml文件。此外&#xff0c;还有README.txt、LICENSE.txt等文本文件&#xff0c;便于用户能够…...

5.1 webrtc线程模型

那从今天开始呢&#xff1f;我们来了解一下y8 tc线程相关的内容&#xff0c;那在开始之前呢&#xff1f;我们先来看一下&#xff0c;我们本章都要讲解哪些知识&#xff1f; 那第一个呢&#xff1f;是线程的基础知识&#xff0c;这块内容呢&#xff1f;主要是为大家做一下回顾&a…...

【Linux网络】Cookie和session的关系

目录 一、Cookie 和 session 共同之处 二、Cookie 和 session 区别 2.1、cookie 2.2、session 三、cookie的工作原理 四、session的工作原理 一、Cookie 和 session 共同之处 Cookie 和 Session 都是用来跟踪浏览器用户身份的会话方式。 二、Cookie 和 session 区别 2.…...

android 硬编码保存mp4

目录 java imagereader编码保存 java NV21toYUV420SemiPlanar 编码保存视频用&#xff1a; imageReader获取nv21 代码来自博客&#xff1a; 【Android Camera2】彻底弄清图像数据YUV420_888转NV21问题/良心教学/避坑必读!_yuv420888转nv21_奔跑的鲁班七号的博客-CSDN博客 …...

gitlab合并分支

我的分支为 cheng 第一步&#xff1a; 增加新的代码 第二步&#xff1a;提交并推送 第三步&#xff1a;打开gitlab&#xff0c;找到对应项目 这样就成功把cheng分支合并到dev-test分支了...

手撕 `np.transpose` : 三维数组的循环转置

手撕 np.transpose : 三维数组的循环转置 手撕 np.transpose 2D 何为transpose ? 如上图: 二维的例子, 直观地理解就是沿着对角线拉平(对角关系左上右下依旧), 其他位置依次填充. 2. 2D数组中0,1 为原始参, 1,0 为转置参 - 原始参即数组的原始形态: 比如&#x1f446;&#x…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...