当前位置: 首页 > news >正文

2023年高教社杯数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录

    • 算法介绍
    • FP树表示法
    • 构建FP树
    • 实现代码
  • 建模资料

## 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

相关文章:

2023年高教社杯数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录 算法介绍FP树表示法构建FP树实现代码 建模资料 ## 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法&#xff0c;就是频繁模式树算法&#xff0c…...

批量根据excel数据绘制饼状图

要使用Python批量根据Excel数据绘制饼状图&#xff0c;可以使用pandas和matplotlib库来实现。以下是一个基本的代码示例&#xff1a; import pandas as pd import matplotlib.pyplot as plt # 读取Excel文件 data pd.read_excel(data.xlsx) # 提取需要用于绘制饼状图的数据列…...

C++头文件和std命名空间

C 是在C语言的基础上开发的&#xff0c;早期的 C 还不完善&#xff0c;不支持命名空间&#xff0c;没有自己的编译器&#xff0c;而是将 C 代码翻译成C代码&#xff0c;再通过C编译器完成编译。 这个时候的 C 仍然在使用C语言的库&#xff0c;stdio.h、stdlib.h、string.h 等头…...

浏览器有哪几种缓存?各种缓存之间的优先级

在浏览器中&#xff0c;有以下几种常见的缓存&#xff1a; 1、强制缓存&#xff1a;通过设置 Cache-Control 和 Expires 等响应头实现&#xff0c;可以让浏览器直接从本地缓存中读取资源而不发起请求。2、协商缓存&#xff1a;通过设置 Last-Modified 和 ETag 等响应头实现&am…...

【C++】list

list 1. 简单了解list2. list的常见接口3. 简单实现list4. vector和list比较 1. 简单了解list list的底层是带头双向循环列表。因此list支持任意位置的插入和删除&#xff0c;且效率较高。但其缺陷也很明显&#xff0c;由于各节点在物理空间是不连续的&#xff0c;所以不支持对…...

剪枝基础与实战(2): L1和L2正则化及BatchNormalization讲解

1. CIFAR10 数据集 CIFAR10 是深度学习入门最先接触到的数据集之一,主要用于图像分类任务中,该数据集总共有10个类别。 图片数量:6w 张图片宽高:32x32图片类别:10Trainset: 5w 张,5 个训练块Testset: 1w 张,1 个测试块Pytorch 集成了很多常见数据集的API, 可以通过py…...

C语言学习笔记---指针进阶01

C语言程序设计笔记---016 C语言指针进阶前篇1、字符指针2、指针数组2.1、指针数组例程1 -- 模拟一个二维数组2.2、指针数组例程2 3、数组指针3.1、回顾数组名&#xff1f;3.2、数组指针定义与初始化&#xff08;格式&#xff09;3.3、数组指针的作用 --- 常用于二维数组3.4、数…...

【Go 基础篇】Go 语言字符串函数详解:处理字符串进阶

大家好&#xff01;继续我们关于Go语言中字符串函数的探索。字符串是编程中常用的数据类型&#xff0c;而Go语言为我们提供了一系列实用的字符串函数&#xff0c;方便我们进行各种操作&#xff0c;如查找、截取、替换等。在上一篇博客的基础上&#xff0c;我们将继续介绍更多字…...

GAN原理 代码解读

模型架构 代码 数据准备 import os import time import matplotlib.pyplot as plt import numpy as np import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision import datasets import torch.nn as nn import torch# 创建文…...

HTML的label标签有什么用?

当你想要将表单元素&#xff08;如输入框、复选框、单选按钮等&#xff09;与其描述文本关联起来&#xff0c;以便提供更好的用户界面和可访问性时&#xff0c;就可以使用HTML中的<label>标签。<label>标签用于为表单元素提供标签或标识&#xff0c;使用户能够更清…...

docker在阿里云上的镜像仓库管理

目录 一.登录进入阿里云网站&#xff0c;点击个人实例进行创建 二.创建仓库&#xff0c;填写相关信息 三.在访问凭证中设置固定密码用于登录&#xff0c;登录时用户名是使用你注册阿里云的账号名称&#xff0c;密码使用设置的固定密码 四.为镜像打标签并推送到仓库 五.拉取…...

html-dom核心内容--四要素

1、结构 HTML DOM (文档对象模型) 当网页被加载时&#xff0c;浏览器会创建页面的文档对象模型&#xff08;Document Object Model&#xff09;。 2、核心关注的内容&#xff1a;“元素”&#xff0c;“属性”&#xff0c;“修改样式”&#xff0c;“事件反应”。>四要素…...

golang的继承

golang中并没有继承以及oop&#xff0c;但是我们可以通过struct嵌套来完成这个操作。 定义struct 以下定义了一个Person结构体&#xff0c;这个结构体有Eat方法以及三个属性 type Person struct {Name stringAge uint16Phone string }func (recv *Person) Eat() {fmt.Prin…...

Google Play商店优化排名因素之应用截图与视频

屏幕截图是影响转化率的最重要的视觉效果之一。大多数人只需查看应用程序屏幕截图&#xff0c;就会决定是否尝试去下载我们的应用程序。 1、在Google Play商店中&#xff0c;搜索结果页面根据我们搜索的关键词有不同的样式。 展示应用程序中最好的部分&#xff0c;添加一些文字…...

fastadmin iis伪静态应用入口文件index.php

<?xml version"1.0" encoding"UTF-8"?> <configuration><system.webServer><rewrite><rules><rule name"OrgPage" stopProcessing"true"><match url"^(.*)$" /><conditions…...

0821|C++day1 初步认识C++

一、思维导图 二、知识点回顾 【1】QT软件的使用 1&#xff09;创建文件 创建文件时&#xff0c;文件的路径一定是全英文 2&#xff09;修改编码 工具--->选项--->行为--->默认编码&#xff1a;system 【2】C和C的区别 C又叫C plus plus&#xff0c;C是对C的扩充&…...

Linux上实现分片压缩及解压分片zip压缩包 - 及zip、unzip命令详解

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…...

概率论作业啊啊啊

1 数据位置 (Measures of location) 对于数据集: 7 , 9 , 9 , 10 , 10 , 11 , 11 , 12 , 12 , 12 , 13 , 14 , 14 , 15 , 16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 计算加权平均数&#xff0c;其中权重为: 2 , 1 , 3 , 2 ,…...

React re-render

What is&#xff1f; react的渲染分为两个阶段: render&#xff0c;组件第一次出现在屏幕上的时候触发re-render&#xff0c; 组件第一次渲染之后的渲染 当app的数据更新时(用户手动更新、或异步请求)。 When&#xff1f; re-render发生有四种可能&#xff1a; state改变…...

从零开始配置Jenkins与GitLab集成:一步步实现持续集成

在软件开发中&#xff0c;持续集成是确保高效协作和可靠交付的核心实践。以下是在CentOS上安装配置Jenkins与GitLab集成的详细步骤&#xff1a; 1.安装JDK 解压JDK安装包并设置环境变量&#xff1a; JDK下载网址 Java Downloads | Oracle 台灣 tar zxvf jdk-11.0.5_linux-x64_b…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...