当前位置: 首页 > news >正文

论文解读:Bert原理深入浅出

摘取于https://www.jianshu.com/p/810ca25c4502

任务1:Masked Language Model
Maked LM 是为了解决单向信息问题,现有的语言模型的问题在于,没有同时利用双向信息,如 ELMO 号称是双向LM,但实际上是两个单向 RNN 构成的语言模型的拼接,由于时间序列的关系,RNN模型预测当前词只依赖前面出现过的词,对于后面的信息无从得知。

那么如何同时利用好前面的词和后面的词的语义呢?Bert 提出 Masked Language Model,也就是随机遮住句子中部分 Token,模型再去通过上下文语义去预测 Masked 的词,通过调整模型的参数使得模型预测正确率尽可能大。

怎么理解这一逻辑,Bert 预训练过程就是模仿我们学习语言的过程,要准确的理解一个句子或一段文本的语义,就要学习上下文关系,从上下文语义来推测空缺单词的含义。而 Bert 的做法模拟了英语中的完形填空,随机将一些单词遮住,让 Bert 模型去预测这个单词,以此达到学习整个文本语义的目的。

那么 Bert 如何做到”完形填空“的呢?

随机 mask 预料中 15% 的 Token,然后预测 [MASK] Token,与 masked token 对应的最终隐藏向量被输入到词汇表上的 softmax 层中。这虽然确实能训练一个双向预训练模型,但这种方法有个缺点,因为在预训练过程中随机 [MASK] Token 由于每次都是全部 mask,预训练期间会记住这些 MASK 信息,但是在fine-tune期间从未看到过 [MASK] Token,导致预训练和 fine-tune 信息不匹配。

而为了解决预训练和 fine-tune 信息不匹配,Bert 并不总是用实际的 [MASK] Token 替换 masked 词汇。

my dog is hairy → my dog is [MASK] 80%选中的词用[MASK]代替
my dog is hairy → my dog is apple  10%将选中的词用任意词代替
my dog is hairy → my dog is hairy  10%选中的词不发生变化

为什么 15% 的 Token 不完全 MASK?如果只有 MASK,这个预训练模型是有偏置的,也就是只能学到一种方式,用上下文去预测一个词,这导致 fine-tune 丢失一部分信息。

加上 10% 的随机词和 10% 的真实值是让模型知道,每个词都有意义,除了要学习上下文信息,还需要提防每个词,因为每个词都不一定是对的,对于 Bert 来说,每个词都需要很好的理解和预测。

有些人会疑惑,加了随机 Token,会让模型产生疑惑,从而不能学到真实的语义吗?对于人来说,完形填空都不一定能做对,而将文本中某些词随机替换,更是难以理解,从概率角度来说,随机 Token 占比只有 15% * 10% = 1.5%,预料足够的情况下,这并不会影响模型的性能。

因为 [MASK] Token 占比变小,且预测难度加大的原因,所以 MASK 会花更多时间。

任务2:Next Sentence Prediction
在许多下游任务中,如问答系统 QA 和自然语言推理 NLI,都是建立在理解两个文本句子之间的关系基础上,这不是语言模型能直接捕捉到的。

为了训练一个理解句子关系的模型,作者提出 Next Sentence Prediction,也即是预训练一个下一句预测的二分类任务,这个任务就是每次训练前都会从语料库中随机选择句子 A 和句子 B,50% 是正确的相邻的句子,50% 是随机选取的一个句子,这个任务在预训练中能达到 97%-98% 的准确率,并且能很显著的提高 QA 和 NLI 的效果。

Input = [CLS] the man went to [MASK] store [SEP]he bought a gallon [MASK] milk [SEP]
Label = IsNextInput = [CLS] the man [MASK] to the store [SEP]penguin [MASK] are flight ##less birds [SEP]
Label = NotNext

模型通过对 Masked LM 任务和 Next Sentence Prediction 任务进行联合训练,使模型输出的每个字 / 词的向量表示都能尽可能全面、准确地刻画输入文本(单句或语句对)的整体信息,为后续的微调任务提供更好的模型参数初始值。

作者:随时学丫
链接:https://www.jianshu.com/p/810ca25c4502
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章:

论文解读:Bert原理深入浅出

摘取于https://www.jianshu.com/p/810ca25c4502 任务1:Masked Language Model Maked LM 是为了解决单向信息问题,现有的语言模型的问题在于,没有同时利用双向信息,如 ELMO 号称是双向LM,但实际上是两个单向 RNN 构成的…...

共享内存 windows和linux

服务端&#xff0c;即写入端 #include <iostream> #include <string.h> #define BUF_SIZE 1024 #ifdef _WIN32 #include <windows.h> #define SHARENAME L"shareMemory" HANDLE g_MapFIle; LPVOID g_baseBuffer; #else #define SHARENAME "sh…...

一个mongodb问题分析

mongodb问题分析 现状 表的个数&#xff1a; 生产上常用的表就10来个。 sharding cluster replica set方式部署&#xff1a; 9个shard server&#xff0c; 每个shard server 1主2从&#xff0c; 大量数据写入时或对大表创建索引时&#xff0c;可能有主从复制延迟问题。实…...

Vue3.0极速入门- 目录和文件说明

目录结构 以下文件均为npm create helloworld自动生成的文件目录结构 目录截图 目录说明 目录/文件说明node_modulesnpm 加载的项目依赖模块src这里是我们要开发的目录&#xff0c;基本上要做的事情都在这个目录里assets放置一些图片&#xff0c;如logo等。componentsvue组件…...

RabbitMQ---订阅模型-Direct

1、 订阅模型-Direct • 有选择性的接收消息 • 在订阅模式中&#xff0c;生产者发布消息&#xff0c;所有消费者都可以获取所有消息。 • 在路由模式中&#xff0c;我们将添加一个功能 - 我们将只能订阅一部分消息。 例如&#xff0c;我们只能将重要的错误消息引导到日志文件…...

Django REST framework实现api接口

drf 是Django REST framework的简称&#xff0c;drf 是基于django的一个api 接口实现框架&#xff0c;REST是接口设计的一种风格。 一、 安装drf pip install djangorestframework pip install markdown # Markdown support for the browsable API. pip install …...

4.19 20

服务端没有 listen&#xff0c;客户端发起连接建立&#xff0c;会发生什么&#xff1f; 服务端如果只 bind 了 IP 地址和端口&#xff0c;而没有调用 listen 的话&#xff0c;然后客户端对服务端发起了连接建立&#xff0c;服务端会回 RST 报文。 没有 listen&#x…...

(动态规划) 剑指 Offer 10- II. 青蛙跳台阶问题 ——【Leetcode每日一题】

❓剑指 Offer 10- II. 青蛙跳台阶问题 难度&#xff1a;简单 一只青蛙一次可以跳上1级台阶&#xff0c;也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。 答案需要取模 1e97&#xff08;1000000007&#xff09;&#xff0c;如计算初始结果为&#xff1a;1…...

物联网WIFI 模块AT指令版本七大元凶

前言 目前我们讨论的这个问题&#xff0c;并不是说WIFI方案不具备以应的功能。而是指在同一个AT固件下可能存在的问题。由于各厂商AT指令的开发深度不同&#xff0c;导致各厂商之间的AT指令差异很大。我总结了一些问题&#xff0c;可能是导致目前AT指令不好用元凶。 底层库问题…...

Qt 正则(数据格式校验、替换指定格式数据、获取匹配数据)

头文件引用 #include <QRegExp>初始化QRegExp实列 QRegExp re("^\\d{1,3},\\d{1,3}$");数据格式验证 QRegExp re("^\\d{1,3},\\d{1,3}$"); QString msg "12,33"; if(re.exactMatch()){// 验证通过 }else{//验证不通过 }替换数…...

网络层协议——ip

文章目录 1. 网络层2. IP协议2.1 协议头格式 3. 网段划分3.1 特殊的IP地址3.2 IP地址的数量限制 4. 私有IP地址和公网IP地址 1. 网络层 在应用层解决了如何读取完整报文、序列化反序列化、协议处理问题。在传输层解决了可靠性问题。那么网络层IP的作用是在复杂的网络环境中确定…...

Qt6和Rust结合构建桌面应用

桌面应用程序是原生的、快速的、安全的&#xff0c;并提供Web应用程序无法比拟的体验。 Rust 是一种低级静态类型多范式编程语言&#xff0c;专注于安全性和性能&#xff0c;解决了 C/C 长期以来一直在努力解决的问题&#xff0c;例如内存错误和构建并发程序。 在桌面应用程序开…...

Kubernetes(K8S)简介

Kubernetes (K8S) 是什么 它是一个为 容器化 应用提供集群部署和管理的开源工具&#xff0c;由 Google 开发。Kubernetes 这个名字源于希腊语&#xff0c;意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。 Google 在 2014 年开源了 Kubernetes 项…...

面试中问:React中函数组件和class组件的区别,hooks模拟生命周期

React中函数组件和class组件的区别&#xff0c;hooks模拟生命周期 React中函数组件和class组件的区别hooks模拟生命周期 React中函数组件和class组件的区别 函数组件: 定义&#xff1a;函数组件是使用纯函数定义的组件&#xff0c;它接受 props 作为参数并返回 JSX。简洁性&am…...

Python高光谱遥感数据处理与高光谱遥感机器学习方法应用

本文提供一套基于Python编程工具的高光谱数据处理方法和应用案例。 本文涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心&#xff0c;用通俗易懂的语言解释高光谱的基本概念和理论&#xff0c;旨在帮助学员深入理解科学原理。方法篇结合Python编程工具&#xff0c;专注…...

Java实现接收xml格式数据并解析,返回xml格式数据

需求描述&#xff1a;后端接受xml格式数据&#xff0c;解析出相应数据&#xff0c;并返回xml格式数据。 <!--XML解析--><dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId>…...

【C++】初步认识模板

&#x1f3d6;️作者&#xff1a;malloc不出对象 ⛺专栏&#xff1a;C的学习之路 &#x1f466;个人简介&#xff1a;一名双非本科院校大二在读的科班编程菜鸟&#xff0c;努力编程只为赶上各位大佬的步伐&#x1f648;&#x1f648; 目录 前言一、泛型编程二、函数模板2.1 函…...

Ansible 临时命令搭建安装仓库

创建一个名为/ansible/yum.sh 的 shell 脚本&#xff0c;该脚本将使用 Ansible 临时命令在各个受管节点上安装 yum 存储库. 存储库1&#xff1a; 存储库的名称为 EX294_BASE 描述为 EX294 base software 基础 URL 为 http://content/rhel8.0/x86_64/dvd/BaseOS GPG 签名检查为…...

phpstorm动态调试

首先在phpstudy搭建好网站&#xff0c;在管理拓展开启xdebug拓展 查看php.ini配置已经更改 需要增添修改一下设置 [Xdebug] zend_extensionD:/phpstudy_pro/Extensions/php/php5.6.9nts/ext/php_xdebug.dll xdebug.collect_params1 xdebug.collect_return1 xdebug.auto_trace…...

二叉树的层序遍历及完全二叉树的判断

文章目录 1.二叉树层序遍历 2.完全二叉树的判断 文章内容 1.二叉树层序遍历 二叉树的层序遍历需要一个队列来帮助实现。 我们在队列中存储的是节点的地址&#xff0c;所以我们要对队列结构体的数据域重定义&#xff0c; 以上代码 从逻辑上来讲就是1入队&#xff0c;1出队&am…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...