论文解读:Bert原理深入浅出
摘取于https://www.jianshu.com/p/810ca25c4502
任务1:Masked Language Model
Maked LM 是为了解决单向信息问题,现有的语言模型的问题在于,没有同时利用双向信息,如 ELMO 号称是双向LM,但实际上是两个单向 RNN 构成的语言模型的拼接,由于时间序列的关系,RNN模型预测当前词只依赖前面出现过的词,对于后面的信息无从得知。
那么如何同时利用好前面的词和后面的词的语义呢?Bert 提出 Masked Language Model,也就是随机遮住句子中部分 Token,模型再去通过上下文语义去预测 Masked 的词,通过调整模型的参数使得模型预测正确率尽可能大。
怎么理解这一逻辑,Bert 预训练过程就是模仿我们学习语言的过程,要准确的理解一个句子或一段文本的语义,就要学习上下文关系,从上下文语义来推测空缺单词的含义。而 Bert 的做法模拟了英语中的完形填空,随机将一些单词遮住,让 Bert 模型去预测这个单词,以此达到学习整个文本语义的目的。
那么 Bert 如何做到”完形填空“的呢?
随机 mask 预料中 15% 的 Token,然后预测 [MASK] Token,与 masked token 对应的最终隐藏向量被输入到词汇表上的 softmax 层中。这虽然确实能训练一个双向预训练模型,但这种方法有个缺点,因为在预训练过程中随机 [MASK] Token 由于每次都是全部 mask,预训练期间会记住这些 MASK 信息,但是在fine-tune期间从未看到过 [MASK] Token,导致预训练和 fine-tune 信息不匹配。
而为了解决预训练和 fine-tune 信息不匹配,Bert 并不总是用实际的 [MASK] Token 替换 masked 词汇。
my dog is hairy → my dog is [MASK] 80%选中的词用[MASK]代替
my dog is hairy → my dog is apple 10%将选中的词用任意词代替
my dog is hairy → my dog is hairy 10%选中的词不发生变化
为什么 15% 的 Token 不完全 MASK?如果只有 MASK,这个预训练模型是有偏置的,也就是只能学到一种方式,用上下文去预测一个词,这导致 fine-tune 丢失一部分信息。
加上 10% 的随机词和 10% 的真实值是让模型知道,每个词都有意义,除了要学习上下文信息,还需要提防每个词,因为每个词都不一定是对的,对于 Bert 来说,每个词都需要很好的理解和预测。
有些人会疑惑,加了随机 Token,会让模型产生疑惑,从而不能学到真实的语义吗?对于人来说,完形填空都不一定能做对,而将文本中某些词随机替换,更是难以理解,从概率角度来说,随机 Token 占比只有 15% * 10% = 1.5%,预料足够的情况下,这并不会影响模型的性能。
因为 [MASK] Token 占比变小,且预测难度加大的原因,所以 MASK 会花更多时间。
任务2:Next Sentence Prediction
在许多下游任务中,如问答系统 QA 和自然语言推理 NLI,都是建立在理解两个文本句子之间的关系基础上,这不是语言模型能直接捕捉到的。
为了训练一个理解句子关系的模型,作者提出 Next Sentence Prediction,也即是预训练一个下一句预测的二分类任务,这个任务就是每次训练前都会从语料库中随机选择句子 A 和句子 B,50% 是正确的相邻的句子,50% 是随机选取的一个句子,这个任务在预训练中能达到 97%-98% 的准确率,并且能很显著的提高 QA 和 NLI 的效果。
Input = [CLS] the man went to [MASK] store [SEP]he bought a gallon [MASK] milk [SEP]
Label = IsNextInput = [CLS] the man [MASK] to the store [SEP]penguin [MASK] are flight ##less birds [SEP]
Label = NotNext
模型通过对 Masked LM 任务和 Next Sentence Prediction 任务进行联合训练,使模型输出的每个字 / 词的向量表示都能尽可能全面、准确地刻画输入文本(单句或语句对)的整体信息,为后续的微调任务提供更好的模型参数初始值。
作者:随时学丫
链接:https://www.jianshu.com/p/810ca25c4502
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
相关文章:
论文解读:Bert原理深入浅出
摘取于https://www.jianshu.com/p/810ca25c4502 任务1:Masked Language Model Maked LM 是为了解决单向信息问题,现有的语言模型的问题在于,没有同时利用双向信息,如 ELMO 号称是双向LM,但实际上是两个单向 RNN 构成的…...
共享内存 windows和linux
服务端,即写入端 #include <iostream> #include <string.h> #define BUF_SIZE 1024 #ifdef _WIN32 #include <windows.h> #define SHARENAME L"shareMemory" HANDLE g_MapFIle; LPVOID g_baseBuffer; #else #define SHARENAME "sh…...
一个mongodb问题分析
mongodb问题分析 现状 表的个数: 生产上常用的表就10来个。 sharding cluster replica set方式部署: 9个shard server, 每个shard server 1主2从, 大量数据写入时或对大表创建索引时,可能有主从复制延迟问题。实…...
Vue3.0极速入门- 目录和文件说明
目录结构 以下文件均为npm create helloworld自动生成的文件目录结构 目录截图 目录说明 目录/文件说明node_modulesnpm 加载的项目依赖模块src这里是我们要开发的目录,基本上要做的事情都在这个目录里assets放置一些图片,如logo等。componentsvue组件…...
RabbitMQ---订阅模型-Direct
1、 订阅模型-Direct • 有选择性的接收消息 • 在订阅模式中,生产者发布消息,所有消费者都可以获取所有消息。 • 在路由模式中,我们将添加一个功能 - 我们将只能订阅一部分消息。 例如,我们只能将重要的错误消息引导到日志文件…...
Django REST framework实现api接口
drf 是Django REST framework的简称,drf 是基于django的一个api 接口实现框架,REST是接口设计的一种风格。 一、 安装drf pip install djangorestframework pip install markdown # Markdown support for the browsable API. pip install …...
4.19 20
服务端没有 listen,客户端发起连接建立,会发生什么? 服务端如果只 bind 了 IP 地址和端口,而没有调用 listen 的话,然后客户端对服务端发起了连接建立,服务端会回 RST 报文。 没有 listen&#x…...
(动态规划) 剑指 Offer 10- II. 青蛙跳台阶问题 ——【Leetcode每日一题】
❓剑指 Offer 10- II. 青蛙跳台阶问题 难度:简单 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。 答案需要取模 1e97(1000000007),如计算初始结果为:1…...
物联网WIFI 模块AT指令版本七大元凶
前言 目前我们讨论的这个问题,并不是说WIFI方案不具备以应的功能。而是指在同一个AT固件下可能存在的问题。由于各厂商AT指令的开发深度不同,导致各厂商之间的AT指令差异很大。我总结了一些问题,可能是导致目前AT指令不好用元凶。 底层库问题…...
Qt 正则(数据格式校验、替换指定格式数据、获取匹配数据)
头文件引用 #include <QRegExp>初始化QRegExp实列 QRegExp re("^\\d{1,3},\\d{1,3}$");数据格式验证 QRegExp re("^\\d{1,3},\\d{1,3}$"); QString msg "12,33"; if(re.exactMatch()){// 验证通过 }else{//验证不通过 }替换数…...
网络层协议——ip
文章目录 1. 网络层2. IP协议2.1 协议头格式 3. 网段划分3.1 特殊的IP地址3.2 IP地址的数量限制 4. 私有IP地址和公网IP地址 1. 网络层 在应用层解决了如何读取完整报文、序列化反序列化、协议处理问题。在传输层解决了可靠性问题。那么网络层IP的作用是在复杂的网络环境中确定…...
Qt6和Rust结合构建桌面应用
桌面应用程序是原生的、快速的、安全的,并提供Web应用程序无法比拟的体验。 Rust 是一种低级静态类型多范式编程语言,专注于安全性和性能,解决了 C/C 长期以来一直在努力解决的问题,例如内存错误和构建并发程序。 在桌面应用程序开…...
Kubernetes(K8S)简介
Kubernetes (K8S) 是什么 它是一个为 容器化 应用提供集群部署和管理的开源工具,由 Google 开发。Kubernetes 这个名字源于希腊语,意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。 Google 在 2014 年开源了 Kubernetes 项…...
面试中问:React中函数组件和class组件的区别,hooks模拟生命周期
React中函数组件和class组件的区别,hooks模拟生命周期 React中函数组件和class组件的区别hooks模拟生命周期 React中函数组件和class组件的区别 函数组件: 定义:函数组件是使用纯函数定义的组件,它接受 props 作为参数并返回 JSX。简洁性&am…...
Python高光谱遥感数据处理与高光谱遥感机器学习方法应用
本文提供一套基于Python编程工具的高光谱数据处理方法和应用案例。 本文涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心,用通俗易懂的语言解释高光谱的基本概念和理论,旨在帮助学员深入理解科学原理。方法篇结合Python编程工具,专注…...
Java实现接收xml格式数据并解析,返回xml格式数据
需求描述:后端接受xml格式数据,解析出相应数据,并返回xml格式数据。 <!--XML解析--><dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId>…...
【C++】初步认识模板
🏖️作者:malloc不出对象 ⛺专栏:C的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 目录 前言一、泛型编程二、函数模板2.1 函…...
Ansible 临时命令搭建安装仓库
创建一个名为/ansible/yum.sh 的 shell 脚本,该脚本将使用 Ansible 临时命令在各个受管节点上安装 yum 存储库. 存储库1: 存储库的名称为 EX294_BASE 描述为 EX294 base software 基础 URL 为 http://content/rhel8.0/x86_64/dvd/BaseOS GPG 签名检查为…...
phpstorm动态调试
首先在phpstudy搭建好网站,在管理拓展开启xdebug拓展 查看php.ini配置已经更改 需要增添修改一下设置 [Xdebug] zend_extensionD:/phpstudy_pro/Extensions/php/php5.6.9nts/ext/php_xdebug.dll xdebug.collect_params1 xdebug.collect_return1 xdebug.auto_trace…...
二叉树的层序遍历及完全二叉树的判断
文章目录 1.二叉树层序遍历 2.完全二叉树的判断 文章内容 1.二叉树层序遍历 二叉树的层序遍历需要一个队列来帮助实现。 我们在队列中存储的是节点的地址,所以我们要对队列结构体的数据域重定义, 以上代码 从逻辑上来讲就是1入队,1出队&am…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
