当前位置: 首页 > news >正文

深度学习数据预处理

参考文章:深度学习中的数据预处理方法总结

在深度学习中,数据预处理(preprocessing)的重要性体现在以下几个方面:
1、数据质量: 原始数据通常包含错误、缺失值、异常值和噪声。预处理能够检测和处理这些问题,确保数据的质量,从而避免模型因低质量数据而产生错误的学习。

2、特征缩放和归一化: 深度学习模型对输入数据的尺度敏感,不同尺度的特征可能导致模型收敛困难。通过特征缩放和归一化,可以将特征值调整到相近的范围,帮助模型更快地收敛并提高泛化能力。

3、特征工程: 数据预处理阶段可以进行特征工程,即创建新特征或对现有特征进行转换,以提供更有信息量的输入给模型。这有助于模型更好地捕捉数据中的模式和规律。

4、处理分类变量: 深度学习模型通常需要数值型输入,但实际数据中可能存在分类变量。数据预处理可以将分类变量转换为适当的数值表示,使其能够被模型使用。

5、噪声降低: 预处理可以帮助消除无关信息或噪声,从而使模型能够专注于学习真正有意义的模式,提高模型的泛化能力。

6、模型性能: 适当的数据预处理可以改善模型的性能。经过预处理的数据有助于模型更准确地捕获数据中的规律,提高模型在新数据上的表现。

7、模型收敛: 如果输入数据分布不一致,模型可能会在训练过程中很难收敛。预处理可以帮助调整数据分布,使模型更容易收敛。

总之,数据预处理在深度学习中扮演着至关重要的角色,能够优化数据,提高模型的性能,同时也有助于避免一些常见的问题,如过拟合、训练不稳定等。一个经过良好预处理的数据集能够为模型提供更好的输入,从而帮助模型更好地理解和解决问题。

数据预处理的种类:

处理类别不平衡数据
当数据集中的类别分布不平衡时,模型可能倾向于偏向数量较多的类别,导致对于少数类别的识别或预测性能较差。可以考虑用以下方法来降低数据类别不平衡产生的影响:

  1. 过采样: 通过复制少数类别样本或生成合成样本来增加少数类别的样本数量。常见的过采样方法包括随机过采样(从少数类别中随机选择样本,之后复制多次来达到与多数类别的样本量的平衡,其中复制的次数选择不当有可能引入过拟合问题)、SMOTE方法(在少数类别样本中进行插值来生成新的合成样本,但是该方法可能会引入一定程度的噪声)
  2. 欠采样: 通过减少多数类别样本的数量来平衡类别分布。但是删除样本会导致丢失一些信息。
  3. 集成方法:集成方法可以用来处理不平衡数据、提高模型的泛化能力以及增强预测的稳定性。Voting和Stacking是两种常见的集成方法。
  4. 类别权重:通过给予少数类别更高的权重,可以在模型训练中引入偏重,以平衡不同类别的重要性。这样可以使模型更加关注少数类别的样本,从而提高对少数类别的分类性能。
  5. 根据领域知识或数据特点,设计并生成与少数类别相关的新特征。这些特征可以帮助模型更好地区分不同类别,提高少数类别的分类性能。
  6. 阈值调整:调整分类器的预测阈值,使得模型更倾向于少数类别。通常,降低阈值可以增加对少数类别的预测,但同时也可能增加误分类率。
    需要注意的是:处理不平衡数据时,需要在训练集和测试集上保持类别分布的一致性,以确保模型在真实场景中的性能。

数据增强
数据增强通过对训练数据进行一系列随机变换或扩展,来增加数据的多样性和数量,从而改善模型的泛化能力和鲁棒性。计算机视觉中的常见数据增强方法有:
1、随机裁剪(Random Cropping):随机裁剪是在原始图像中随机选择一个区域,并将其作为训练样本。通过随机裁剪,模型可以学习到不同物体的不同部分,提高模型对物体位置的鲁棒性。
2、随机翻转(Random Flipping):随机翻转是以一定的概率将图像水平或垂直翻转。这种变换可以增加数据的多样性,并对模型的旋转不变性进行训练。
3、随机旋转(Random Rotation):随机旋转是以一定的角度范围对图像进行随机旋转变换。这种变换可以使模型具备旋转不变性,提高模型对旋转物体的识别能力。在随机旋转过程中,可能会出现旋转后图像区域没有像素值的空白像素点,通常使用插值方法来填充空白像素点。常见的插值方法有如下几种:
1) 最近邻插值(Nearest Neighbor Interpolation):将空白像素点填充为最近邻的像素值。
2) 双线性插值(Bilinear Interpolation): 使用旋转后像素点周围的四个已知像素点的像素值,根据其距离和权重来计算填充像素点的值。
3) 双三次插值(Bicubic Interpolation): 使用旋转后像素点周围的16个已知像素点的像素值,根据其距离和权重来计算填充像素点的值。
上述三种插值方法中,最近邻插值较快,但是容易产生锯齿效果,双线性插值和双三次插值计算复杂度高,但是能生成更平滑的图像。
4、随机缩放和平移(Random Scaling and Translation):随机缩放和平移是对图像进行随机的缩放和平移变换。这种变换可以增加数据的多样性,并对模型的尺度不变性进行训练。
5、随机亮度、对比度和色彩调整(Random Brightness, Contrast, and Color Adjustments):通过对图像进行随机的亮度、对比度和色彩调整,可以增加数据的多样性,并对模型对光照和颜色变化的鲁棒性进行训练。
6、添加噪声(Adding Noise):向图像中添加随机噪声可以增加数据的多样性,并提高模型对噪声的鲁棒性。
7、图像仿射变换(Image Affine Transformation):图像仿射变换是通过对图像进行平移、旋转、缩放和错切等变换,来增加数据的多样性,并对模型的形变不变性进行训练。
8、随机遮挡(Random Occlusion):随机遮挡是在图像中随机选择一部分区域,并将其遮挡或替换为其他像素值。这种变换可以模拟遮挡或缺失的情况,提高模型对遮挡物体的识别能力。

相关文章:

深度学习数据预处理

参考文章:深度学习中的数据预处理方法总结 在深度学习中,数据预处理(preprocessing)的重要性体现在以下几个方面: 1、数据质量: 原始数据通常包含错误、缺失值、异常值和噪声。预处理能够检测和处理这些问…...

[C++] STL_vector 迭代器失效问题

文章目录 1、前言2、情况一:底层空间改变的操作3、情况二:指定位置元素的删除操作4、g编译器对迭代器失效检测4.1 扩容4.2 erase删除任意位置(非尾删)4.3 erase尾删 5、总结 1、前言 **迭代器的主要作用就是让算法能够不用关心底…...

C语言暑假刷题冲刺篇——day5

目录 一、选择题 二、编程题 🎈个人主页:库库的里昂 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏✨收录专栏:C语言每日一练✨相关专栏:代码小游戏、C语言初阶、C语言进阶🤝希望作者…...

若依Cloud集成Flowable6.7.2

项目简介 基于若依Cloud的Jove-Fast微服务项目,集成工作流flowable(接上篇文章) 若依Cloud集成积木报表 项目地址:https://gitee.com/wxjstudy/jove-fast 后端 新建模块 目录结构如下: 引入依赖 前提:引入依赖之前先配置好maven的setting.xml &…...

动态不确定性的动态S过程(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

LoadRunner操作教程

日升时奋斗,日落时自省 目录 1、Virtual User Generator (VUG) 1.1、WebTours系统 1.1.1、WebTours启动 1.1.2、WebTours配置 1.2、脚本录制 1.3、编译 1.4、脚本运行 1.5、加强脚本 1.5.1、事务插入 1.5.2、插入集合点 1.5.3、参…...

.NET Core 实现日志打印输出在控制台应用程序中

在本文中,我们将探讨如何在 .NET Core 应用程序中将日志消息输出到控制台,从而更好地了解应用程序的运行状况。 .NET Core 实现日志打印输出在控制台应用程序中 在 .NET Core 中,日志输出打印是使用 Microsoft.Extensions.Logging 命名空间…...

Nginx正向代理与反向代理及Minio反向代理实操(三)

本文是对: Nginx安装及Minio集群反向动态代理配置(二) 文的进一步完善: 多台服务器间免密登录|免密拷贝 Cenos7 搭建Minio集群部署服务器(一) Cenos7 搭建Minio集群Nginx统一访问入口|反向动态代理(二) Spring Boot 与Minio整合实现文件上传与下载(三) CentOS7的journa…...

Xmake v2.8.2 发布,官方包仓库数量突破 1k

Xmake 是一个基于 Lua 的轻量级跨平台构建工具。 它非常的轻量,没有任何依赖,因为它内置了 Lua 运行时。 它使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好&#x…...

加油站抽烟烟火智能识别算法

加油站抽烟烟火智能识别系统通过yoloopencv网络模型图像识别分析技术,加油站抽烟烟火智能识别算法识别出抽烟和燃放烟火的情况,并发出预警信号以提醒相关人员,减少火灾风险。OpenCV基于C实现,同时提供python, Ruby, Matlab等语言的…...

web前端开发中的响应式布局设计是什么意思?

响应式布局是指网页设计和开发中的一种技术方法,旨在使网页能够在不同大小的屏幕和设备上都能良好地显示和交互。这种方法使得网页可以自动适应不同的屏幕尺寸,包括桌面电脑、平板电脑和手机等。 在Web前端开发中,响应式布局通常使用CSS&…...

【LeetCode-面试经典150题-day14】

目录 19.删除链表的倒数第N个结点 82.删除排序链表中的重复元素Ⅱ 61. 旋转链表 86.分隔链表 146.LRU缓存 19.删除链表的倒数第N个结点 题意: 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 【输入样例】head [1,2,3,4,5…...

【算法系列总结之分组循环篇】

【算法系列总结之分组循环篇】 分组循环1446.连续字符1869.哪种连续子字符串更长1957.删除字符使字符串变好2038.如果相邻两个颜色均相同则删除当前颜色1759.统计同质子字符串的数目2110.股票平滑下跌阶段的数目1578.使绳子变成彩色的最短时间1839.所有元音按顺序排布的最长子字…...

汽车摩托车零部件出口管理ERP解决方案

近年来,随着全球经济的发展,人们对交通工具的需求增加,国内汽车、摩托车市场的不断扩大,以及国内制造技术的不断提高,中国汽车、摩托车零部件出口业务迎来了广阔的发展前景,带动了汽车配件和摩托车配件市场…...

NPM 管理组织包

目录 1、关于组织范围和包 1.1 管理无作用域的包 2、使用组织设置配置npm客户端 2.1 配置您的npm客户端以使用您组织的范围 为所有新包设置组织范围 为单个包设置组织范围 2.2 将默认包可见性更改为public 将单个包的包可见性设置为public 将所有包的包可见性设置为pu…...

蓝桥杯上岸每日N题 (修剪灌木)

大家好 我是寸铁 希望这篇题解对你有用,麻烦动动手指点个赞或关注,感谢您的关注 不清楚蓝桥杯考什么的点点下方👇 考点秘籍 想背纯享模版的伙伴们点点下方👇 蓝桥杯省一你一定不能错过的模板大全(第一期) 蓝桥杯省一你一定不…...

docker harbor私有库

目录 一.Harbor介绍 二.Harbor的特性 三.Harbor的构成 四.Harbor构建Docker私有仓库 4.2在Server主机上部署Harbor服务(192.168.158.25) 4.2.1 这时候这边就可以去查看192.168.158.25网页 4.3此时可真机访问serverIP 4.4通过127.0.0.1来登陆和推送镜…...

strcmp 的使用和模拟

目录 函数介绍: 头文件: 语法: 代码演示: 函数模拟: 函数介绍: strcmp是比较大小的函数。从字符串开始进行比较,如果两个相同位置的字符相同,那么继续往下进行比较,…...

军用加固计算机

军用加固计算机是为满足军事应用需求而设计的一种高性能、高安全性的计算机。与普通计算机相比,它具有以下特点: 加固材料:军用加固计算机通常采用钢板、铝合金等材料进行加固,能够承受较大的冲击和振动,保证在恶劣环境…...

block层:5. 请求分配

请求相关 源码基于5.10 1. 分配请求 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) {// 请求队列struct request_queue *q data->q;// 电梯struct elevator_queue *e q->elevator;u64 alloc_time_ns 0;unsigned int tag;// 判断…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...