UML建模以及几种类图的理解
文章目录
- 前言
- 1.用例与用例图
- 1.1 参与者
- 1.2 用例之间的关系
- 1.3 用例图
- 1.4 用例的描述
- 2.交互图
- 2.1 顺序图
- 2.2 协作图
- 3.类图和对象图
- 3.1 关联关系
- 3.2 聚合和组合
- 3.3 泛化关系
- 3.4 依赖关系
- 4.状态图与活动图
- 4.1 状态图
- 4.2 活动图
- 5.构件图
前言
UML通过图形化的表示机制从多个侧面对系统的分析和设计模型进行刻画。
它定义了10种视图,可以分为4类:
- 用例图 :从外部用户的角度描述系统的功能,并指出功能的执行者。
- 静态图:包括
类图,对象图和包图
。类图描述系统的静态架构,类图的节点表示系统中的类及其属性和操作。类图的边表示类之间的关系,包括继承,关联,依赖,聚合等
。对象图是类图的一个实例,它描述在某种状态下或某一段时间,系统中活跃的对象及其关系。包图描述系统的分解结构,它表示包以及包之间的关系,包由子包以及类组成,包之间的关系包括继承,构成与依赖关系。 - 行为图: 包括
交互图,状态图与活动图
,它们从不同的侧面刻画系统的动态行为。交互图描述对象之间的消息传递,可以分为顺序图与合作图两种形式。顺序图强调对象之间消息发送的顺序。合作图更强调对象间的动态协作关系。 - 实现图:包括构件图与部署图。它们描述软件实现系统的组成与分布状况。构件图描述软件实现系统中组成部件以及它们之间的依赖关系。部署图的描述作为软件系统运行的硬件以及网络的物理体系结构,节点标识实际的计算机与设备,表示节点之间的物理连接关系,也可以显示连接的类型以及节点之间的依赖性。
1.用例与用例图
编写用例必须识别以下元素。
1.1 参与者
角色(Actor)是指系统以外的,需要使用系统或者与系统交互的东西,包括人,设备,外部系统等。角色包括参与者,活动者,执行者和行动者。
1.2 用例之间的关系
用例除了参与者有关联关系外,用例之间也存在着一定的关系,如范化关系,包含关系,扩展关系
等。
1.3 用例图
用例图是显示一组用例.参与者以及它们之间关系的图。
1.4 用例的描述
用例的描述才是用例的核心部分,用例采用自然语言描述参与者与系统进行交互是双方的行为。
2.交互图
交互图用来描述对象之间与参与者之间动态协作关系以及协作过程中行为次序的图形文档。
2.1 顺序图
顺序图也是时序图,是显示对象至今交互的图 ,这些对象是按照时间顺序排列的。
2.2 协作图
描述系统的行为是如何由系统的成分协作实现的图,协作图中包括的建模元素有对象 (包括参与者实例,多对象,主动对象等),消息,链等。
3.类图和对象图
类是具有相似结构,行为和关系的一组对象的抽象。类之间的关系有以下几种。
3.1 关联关系
关联是模型元素之间的一种语义关系,它是对具有共同的结构特性,行为特性 ,关系和语义的链的描述。
3.2 聚合和组合
聚集还是一种特殊的关联。聚集表示类之间的整体与部分的关系。在系统进行分析和设计时,需要描述中的包含,组成等关系。
组合:表示类之间的整体与部分的关系。
3.3 泛化关系
范化关系定义了一般和特殊元素之间关系,面向对象的语言设计来说就是类与类之间的继承关系。
3.4 依赖关系
一个元素的变化会到之后另一个元素的变化,类似于函数的概念。
4.状态图与活动图
4.1 状态图
状态图描述一个对象在其生存期间的动态行为,表现一个对象经历的状态序列,引起状态转移的事件,以及因状态转移而伴随的动作。
4.2 活动图
活动图可以描述系统的工作流程和并发行为。活动图的几个基本概念:活动,泳道,分支,分叉和汇合,对象流
。
5.构件图
构件图显示一组构件之间的相互关系,包括编译,链接或执行时构件之间的依赖关系。
相关文章:

UML建模以及几种类图的理解
文章目录 前言1.用例与用例图1.1 参与者1.2 用例之间的关系1.3 用例图1.4 用例的描述 2.交互图2.1 顺序图2.2 协作图 3.类图和对象图3.1 关联关系3.2 聚合和组合3.3 泛化关系3.4 依赖关系 4.状态图与活动图4.1 状态图4.2 活动图 5.构件图 前言 UML通过图形化的表示机制从多个侧…...

opencv进阶18-基于opencv 决策树导论
1. 什么是决策树? 决策树是最早的机器学习算法之一,起源于对人类某些决策过程 的模仿,属于监督学习算法。 决策树的优点是易于理解,有些决策树既可以做分类,也可以做回归。在排名前十的数据挖掘算法中有两种是决策树[1…...

13.4 目标检测锚框标注 非极大值抑制
锚框的形状计算公式 假设原图的高为H,宽为W 锚框形状详细公式推导 以每个像素为中心生成不同形状的锚框 # s是缩放比,ratio是宽高比 def multibox_prior(data, sizes, ratios):"""生成以每个像素为中心具有不同形状的锚框"""in_he…...

【论文笔记】最近看的时空数据挖掘综述整理8.27
Deep Learning for Spatio-Temporal Data Mining: A Survey 被引用次数:392 [Submitted on 11 Jun 2019 (v1), last revised 24 Jun 2019 (this version, v2)] 主要内容: 该论文是一篇关于深度学习在时空数据挖掘中的应用的综述。论文首先介绍了时空数…...

【大模型】基于 LlaMA2 的高 star 的 GitHub 开源项目汇总
【大模型】基于 LlaMA2 的高 star 的 GitHub 开源项目汇总 Llama2 简介开源项目汇总NO1. FlagAlpha/Llama2-ChineseNO2. hiyouga/LLaMA-Efficient-TuningNO3. yangjianxin1/FireflyNO4. LinkSoul-AI/Chinese-Llama-2-7bNO5. wenge-research/YaYiNO6. michael-wzhu/Chinese-LlaM…...

解决elementUI打包上线后icon图标偶尔乱码的问题
解决vue-elementUI打包后icon图标偶尔乱码的问题 一、背景二、现象三、原因四、处理方法方式1:使用css-unicode-loader方式2:升高 sass版本到1.39.0方式3:替换element-ui的样式文件方式4:更换打包压缩方式知识扩展:方式…...

yolov3加上迁移学习和适度的数据增强形成的网络应用在输电线异物检测
Neural Detection of Foreign Objects for Transmission Lines in Power Systems Abstract. 输电线路为电能从一个地方输送到另一个地方提供了一条路径,确保输电线路的正常运行是向城市和企业供电的先决条件。主要威胁来自外来物,可能导致电力传输中断。…...

香橙派OrangePi zero H2+ 驱动移远EC200A
1 系统内核: Linux orangepizero 5.4.65-sunxi #2.2.2 SMP Tue Aug 15 17:45:28 CST 2023 armv7l armv7l armv7l GNU/Linux 1.1 下载内核头安装 下载:orangepi800 内核头rk3399链接https://download.csdn.net/download/weixin_37613240/87635781 1.1.1…...
写一个java中如何用JSch来连接sftp的类并做测试?(亲测)
当使用JSch连接SFTP服务器的类,并进行测试时,可以按照以下步骤操作: 添加JSch库的依赖项。在你的项目中添加JSch库的Maven依赖项(如前面所述)或下载JAR文件并将其包含在项目中。 <dependency> <groupId&…...

【沐风老师】如何在3dMax中将3D物体转化为样条线构成的对象?
在3dMax中如何把三维物体转化为由样条线构成的对象?通常这样的场景会出现在科研绘图或一些艺术创作当中,下面给大家详细讲解一种3dmax三维物体转样条线的方法。 第一部分:用粒子填充3D对象: 1.创建一个三维对象(本例…...

2023国赛数学建模思路 - 案例:随机森林
文章目录 1 什么是随机森林?2 随机深林构造流程3 随机森林的优缺点3.1 优点3.2 缺点 4 随机深林算法实现 建模资料 ## 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 什么是随机森林ÿ…...

wxpython:wx.html2 是好用的 WebView 组件
wxpython : wx.html2 是好用的 WebView 组件。 pip install wxpython4.2 wxPython-4.2.0-cp37-cp37m-win_amd64.whl (18.0 MB) Successfully installed wxpython-4.2.0 cd \Python37\Scripts wxdemo.exe 取得 wxPython-demo-4.2.0.tar.gz wxdocs.exe 取得 wxPython-docs-4.…...

《QT+PCL 第五章》点云特征-PFH
QT增加点云特征PFH 代码用法代码 #include <pcl/io/pcd_io.h> #include <pcl/features/normal_3d.h> #include <pcl/features/pfh.h>int main...

【分享】小型园区组网场景
小型园区组网图 在小型园区中,S2700&S3700通常部署在网络的接入层,S5700&S6700通常部署在网络的核心,出口路由器一般选用AR系列路由器。 接入交换机与核心交换机通过Eth-Trunk组网保证可靠性。 每个部门业务划分到一个VLAN中&#…...

LeetCode 1267. 统计参与通信的服务器
【LetMeFly】1267.统计参与通信的服务器 力扣题目链接:https://leetcode.cn/problems/count-servers-that-communicate/ 这里有一幅服务器分布图,服务器的位置标识在 m * n 的整数矩阵网格 grid 中,1 表示单元格上有服务器,0 表…...
169. 多数元素(哈希表)
169. 多数元素 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 class Solution { public:int majorityElement(vector<int&…...

微服务集成spring cloud sentinel
目录 1. sentinel使用场景 2. sentinel组成 3. sentinel dashboard搭建 4. sentinel客户端详细使用 4.1 引入依赖 4.2 application.properties增加dashboard注册地址 4.3 手动增加限流配置类 4.4 rest接口及service类 4.5 通过dashboard动态配置限流规则 1. sentinel使…...

2023年最新版Windows环境下|Java8(jdk1.8)安装教程
个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【JavaSE_primary】 jdk1.8的下载和使用总共分为3个步骤: jdk1.8的下载、jdk1.8的安装、配置环境变量。 目录 一、jdk1.8下载…...
linux -- jdk 的安装
jdk 的安装 jdk包下载 链接: https://pan.baidu.com/s/1wa1TJGtCPKQqeCGDZWaP6g 密码: 8el6 安装及验证 ## jdk包上传次目录 /usr/local/software cd /usr/local/software tar -zxvf /usr/local/software/jdk-8u212-linux-x64.tar.gz -C /usr/local cd /usr/local mv jdk1…...

网络安全—黑客技术(学习笔记)
1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...