当前位置: 首页 > news >正文

线性代数的学习和整理12: 矩阵与行列式,计算上的差别对比

目录

1  行列式和矩阵的比较

2 简单总结矩阵与行列式的不同

3 加减乘除的不同

3.1 加法不同

3.2 减法不同

3.3 标量乘法/数乘

3.3.1 标准的数乘对比

3.3.2 数乘的扩展

3.4 乘法

4 初等线性变换的不同

4.1 对矩阵进行线性变换

4.2 对行列式进行线性变换


1  行列式和矩阵的比较

  • 如果矩阵行数列数相等,那么这个矩阵是方阵,只有方阵才有行列式
  • 行列式必须是行列数相等。行列式是方阵的一种特殊运算,加减乘除规则都和矩阵不同

2 简单总结矩阵与行列式的不同

  • 区别1
  1. 矩阵是一个n*m的数表 矩阵是多个向量 ; 矩阵的行数和列数可以不同;
  2. 行列式是一个n阶的方阵样式的;
  • 区别2
  1. 矩阵不能从整体上被看成一个数, 矩阵是多个向量 ;
  2. 行列式最终可以算出来变成一个数/标量;
  • 区别3
  1. 加法不同
  2. 减法不同
  3. 数乘不同
  4. 乘法完全不同,不可比
  • 区别4
  1. 线性变化的交换,行列式不同
  2. 线性变化的倍数,行列式不同
  3. 线性变化的倍加,行列式不变,是相同的

3 加减乘除的不同

3.1 加法不同

  • 矩阵加法,两个矩阵都是n*m,A+B = 对应元素相加
  • 行列式加法,见下图,只是某1行/列相加

\begin{bmatrix} a11 &a12 \\ a21 & a22 \end{bmatrix} + \begin{bmatrix} c11 & a12 \\ c21 & a22 \end{bmatrix} = \begin{bmatrix} a11+c11 &a12+a12 \\ a21+c21 & a22+a22 \end{bmatrix}

\begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} + \begin{vmatrix} c11 & a12\\ c21 & a22 \end{vmatrix} = \begin{vmatrix} a11+c11 & a12\\ a21+c21 & a22 \end{vmatrix}

3.2 减法不同

  • 减法的差别,参考加法

3.3 标量乘法/数乘

3.3.1 标准的数乘对比

  • 矩阵的标量乘法  λ*A=λ*每个元素,*A*B=A*λ*B
  • 行列式的标量乘法,λ*|A|=λ*某1行/列

b*\begin{bmatrix} a11 & a12\\ a21 & a22 \end{bmatrix} = \begin{bmatrix} b*a11 & b*a12\\ b*a21 & b*a22 \end{bmatrix}

b* \begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} = \begin{vmatrix} b*a11 & a12\\ b*a21 & a22 \end{vmatrix} = \begin{vmatrix} b*a11 & b*a12\\ a21 & a22 \end{vmatrix}

3.3.2 数乘的扩展

矩阵的数乘

  • 矩阵的标量乘法始终如此  (λ*A)=λ*(A)

行列式得数乘扩展

  • 行列式的标量乘法,|λ*A|=λ^n*|A| ,其中n是满秩矩阵A的秩/维度
  • 行列数乘法:  |Ann*Bnn| =|Ann|*|Bnn|
  • 行列数乘法:  |2Ann*Bnn| =|2Ann|*|Bnn| =2^n*|Ann|*|Bnn|
  1. 里面是矩阵的数乘,矩阵(假设是方阵)的数乘是每行每列都*λ
  2. 而行列式的数乘是  某1行/列*λ
  3. 因此每行的λ 都可以提出来,因此是n 个λ 相乘=λ^n

3.4 乘法

  • 矩阵乘法
  1. 矩阵乘法:点乘
  2. 矩阵乘法:叉乘
  • 行列式应该只有标量乘法,没有其他乘法吧?

4 初等线性变换的不同

线性变换包含,行的线性变换和列的线性变换

行的线性变换

  1. 行之间,交换
  2. 某行乘以倍数
  3. 某行乘倍数+到其他行

列的线性变换

  1. 列之间,交换
  2. 某列乘以倍数
  3. 某列乘倍数+到其他列

4.1 对矩阵进行线性变换

  • 无论是线性行变换,还是线性列变换,矩阵还是等价得
  1. 交换某行/列
  2. 倍数
  3. 倍加
  • 矩阵进行线性变换后的结果

  1. 线性变换前后系统的特征值不变;
  2. 线性变换前后系统的传递函数矩阵不变;

4.2 对行列式进行线性变换

  • 交换:如果交换行列式|A| 的任意两行/列,增加一个负号-
  • 倍数:如果行列式|A| 某1行或列*λ,|A| 变成 λ*|A|
  • 倍加:如果行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|
  • 总结,只有进行倍加的线性变换之后,行列式才不变化

解释原因

  • 因为行列式其实代表有向的面积比,所以交换行列式|A| 的任意两行/列,增加一个负号-
  • 因为行列式的标量乘法 λ*|A|= 把行列式的某1行/列* λ,所以行列式|A| 某1行或列*λ,|A| 变成 λ*|A|

  • 因为行列式其实代表有向的面积比,所以行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|

相关文章:

线性代数的学习和整理12: 矩阵与行列式,计算上的差别对比

目录 1 行列式和矩阵的比较 2 简单总结矩阵与行列式的不同 3 加减乘除的不同 3.1 加法不同 3.2 减法不同 3.3 标量乘法/数乘 3.3.1 标准的数乘对比 3.3.2 数乘的扩展 3.4 乘法 4 初等线性变换的不同 4.1 对矩阵进行线性变换 4.2 对行列式进行线性变换 1 行列式和…...

2023年MySQL核心技术面试第一篇

目录 一 . 存储:一个完整的数据存储过程是怎样的? 1.1 数据存储过程 1.1.1 创建MySQl 数据库 1.1.1.1 为什么我们要先创建一个数据库,而不是直接创建数据表? 1.1.1.2基本操作部分 1.2 选择索引问题 二 . 字段:这么多的…...

linux启动jar 缺失lib

linux启动jar包时,找不到报错 [rootebs-141185 xl-admin]# java -Djava.library.path/home/kabangke/xl-admin/lib -jar /home/kabangke/xl-admin/xl-admin.jar Exception in thread "main" java.lang.NoClassDefFoundError: org/springframework/web/se…...

【Bash】常用命令总结

文章目录 1. 文件查询1.1 查看文件夹内(包含子文件夹)文件数量1.2 查看文件夹大小 任务简介: 对bash常用命令进行总结。 任务说明: 对平时工作中使用bash的相关命令做一个记录和说明,方便以后查阅。 1. 文件查询 1.…...

小研究 - Java虚拟机性能及关键技术分析

利用specJVM98和Java Grande Forum Benchmark suite Benchmark集合对SJVM、IntelORP,Kaffe3种Java虚拟机进行系统测试。在对测试结果进行系统分析的基础上,比较了不同JVM实现对性能的影响和JVM中关键模块对JVM性能的影响,并提出了提高JVM性能的一些展望。…...

Repo manifests默认default.xml清单文件中的各个标签详解

Repo简介 “Repo” 是一个用于管理多个Git存储库的工具,通常与Google的Android开发项目一起使用。它允许您在一个命令下轻松地进行多个Git存储库的同步、下载和管理。 repo下载安装 从清华镜像源下载 mkdir ~/bin PATH~/bin:$PATH curl https://mirrors.tun…...

javacv基础02-调用本机摄像头并预览摄像头图像画面视频

引入架包&#xff1a; <dependency><groupId>org.openpnp</groupId><artifactId>opencv</artifactId><version>4.5.5-1</version></dependency><dependency><groupId>org.bytedeco</groupId><artifactId…...

【Nginx21】Nginx学习:FastCGI模块(三)缓冲区与响应头

Nginx学习&#xff1a;FastCGI模块&#xff08;三&#xff09;缓冲区与响应头 缓存相关的内容占了 FastCGI 模块将近一小半的内容&#xff0c;当然&#xff0c;用过的人可能不多。而今天的内容说实话&#xff0c;我平常也没怎么用过。第一个是缓冲区相关的知识&#xff0c;其实…...

正则表达式(常用字符简单版)

量词 字符类 边界匹配 分组和捕获 特殊字符 字符匹配 普通字符&#xff1a;普通字符按照字面意义进行匹配&#xff0c;例如匹配字母 "a" 将匹配到文本中的 "a" 字符。元字符&#xff1a;元字符具有特殊的含义&#xff0c;例如 \d 匹配任意数字字符&#xf…...

从零开始学习Python爬虫:详细指南

导言&#xff1a; 随着互联网的迅速发展&#xff0c;大量的数据可供我们利用。而Python作为一种简单易学且功能强大的编程语言&#xff0c;被广泛应用于数据分析和处理。学习Python爬虫技术&#xff0c;能够帮助我们从互联网上获取数据&#xff0c;并进行有效地分析和利用。本文…...

分布式计算框架:Spark、Dask、Ray

目录 什么是分布式计算 分布式计算哪家强&#xff1a;Spark、Dask、Ray 2 选择正确的框架 2.1 Spark 2.2 Dask 2.3 Ray 什么是分布式计算 分布式计算是一种计算方法&#xff0c;和集中式计算是相对的。 随着计算技术的发展&#xff0c;有些应用需要非常巨大的计算能力才…...

什么是伪类链(Pseudo-class Chaining)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ Pseudo-class Chaining⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚…...

每日一题:leetcode 57 插入区间

给你一个 无重叠的 &#xff0c;按照区间起始端点排序的区间列表。 在列表中插入一个新的区间&#xff0c;你需要确保列表中的区间仍然有序且不重叠&#xff08;如果有必要的话&#xff0c;可以合并区间&#xff09;。 示例 1&#xff1a; 输入&#xff1a;intervals [[1,3…...

第五节:实现自己的第一个environment

本专栏是强化学习运用在买卖股票之上的入门学习内容。 主要解决强化学习代码落地和代码实践,不需要学习相关数学原理,直观简单的带领读者入门强化学习炒股。 查看本专栏完整内容,请访问:https://blog.csdn.net/windanchaos/category_12391143.html 本文发布地址:https://b…...

无套路,财务数据分析-多组织损益表分析分享

在报表众多的财务数据分析中&#xff0c;损益表是老板们最关注的报表&#xff0c;特别是当有多组织时&#xff0c;损益表的分析就变得更加重要了。以前受限于数据分析工具&#xff0c;做损益表分析时很难做到多维度灵活分析&#xff0c;但随着BI数据可视化工具的发展&#xff0…...

Java并发编程第6讲——线程池(万字详解)

Java中的线程池是运用场景最多的并发框架&#xff0c;几乎所有需要异步或并发执行任务的程序都可以使用线程池&#xff0c;本篇文章就详细介绍一下。 一、什么是线程池 定义&#xff1a;线程池是一种用于管理和重用线程的技术&#xff08;池化技术&#xff09;&#xff0c;它主…...

AI + Milvus:将时尚应用搭建进行到底

在上一篇文章中&#xff0c;我们学习了如何利用人工智能技术&#xff08;例如开源 AI 向量数据库 Milvus 和 Hugging Face 模型&#xff09;寻找与自己穿搭风格相似的明星。在这篇文章中&#xff0c;我们将进一步介绍如何通过对上篇文章中的项目代码稍作修改&#xff0c;获得更…...

归并排序(Java 实例代码)

目录 归并排序 一、概念及其介绍 二、适用说明 三、过程图示 四、Java 实例代码 MergeSort.java 文件代码&#xff1a; 归并排序 一、概念及其介绍 归并排序&#xff08;Merge sort&#xff09;是建立在归并操作上的一种有效、稳定的排序算法&#xff0c;该算法是采用分…...

【VUE】数字动态变化到目标值-vue-count-to

vue-count-to是一个Vue组件&#xff0c;用于实现数字动画效果。它可以用于显示从一个数字到另一个数字的过渡动画。 插件名&#xff1a;vue-count-to 官方仓库地址&#xff1a;GitHub - PanJiaChen/vue-countTo: Its a vue component that will count to a target number at a…...

Mysql /etc/my.cnf参数详解(二)

#buffer相关 #buffer pool根据实际内存大小调整,标准为物理内存的50% innodb_buffer_pool_size15996M //默认值128M&#xff0c;innodb_buffer_pool_size | 134217728 key_buffer_size 33554432 #根据物理内存大小设置 确保每个instance内的内存2G左右 <5000 1,>5000 &…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...