当前位置: 首页 > news >正文

线性代数的学习和整理12: 矩阵与行列式,计算上的差别对比

目录

1  行列式和矩阵的比较

2 简单总结矩阵与行列式的不同

3 加减乘除的不同

3.1 加法不同

3.2 减法不同

3.3 标量乘法/数乘

3.3.1 标准的数乘对比

3.3.2 数乘的扩展

3.4 乘法

4 初等线性变换的不同

4.1 对矩阵进行线性变换

4.2 对行列式进行线性变换


1  行列式和矩阵的比较

  • 如果矩阵行数列数相等,那么这个矩阵是方阵,只有方阵才有行列式
  • 行列式必须是行列数相等。行列式是方阵的一种特殊运算,加减乘除规则都和矩阵不同

2 简单总结矩阵与行列式的不同

  • 区别1
  1. 矩阵是一个n*m的数表 矩阵是多个向量 ; 矩阵的行数和列数可以不同;
  2. 行列式是一个n阶的方阵样式的;
  • 区别2
  1. 矩阵不能从整体上被看成一个数, 矩阵是多个向量 ;
  2. 行列式最终可以算出来变成一个数/标量;
  • 区别3
  1. 加法不同
  2. 减法不同
  3. 数乘不同
  4. 乘法完全不同,不可比
  • 区别4
  1. 线性变化的交换,行列式不同
  2. 线性变化的倍数,行列式不同
  3. 线性变化的倍加,行列式不变,是相同的

3 加减乘除的不同

3.1 加法不同

  • 矩阵加法,两个矩阵都是n*m,A+B = 对应元素相加
  • 行列式加法,见下图,只是某1行/列相加

\begin{bmatrix} a11 &a12 \\ a21 & a22 \end{bmatrix} + \begin{bmatrix} c11 & a12 \\ c21 & a22 \end{bmatrix} = \begin{bmatrix} a11+c11 &a12+a12 \\ a21+c21 & a22+a22 \end{bmatrix}

\begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} + \begin{vmatrix} c11 & a12\\ c21 & a22 \end{vmatrix} = \begin{vmatrix} a11+c11 & a12\\ a21+c21 & a22 \end{vmatrix}

3.2 减法不同

  • 减法的差别,参考加法

3.3 标量乘法/数乘

3.3.1 标准的数乘对比

  • 矩阵的标量乘法  λ*A=λ*每个元素,*A*B=A*λ*B
  • 行列式的标量乘法,λ*|A|=λ*某1行/列

b*\begin{bmatrix} a11 & a12\\ a21 & a22 \end{bmatrix} = \begin{bmatrix} b*a11 & b*a12\\ b*a21 & b*a22 \end{bmatrix}

b* \begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} = \begin{vmatrix} b*a11 & a12\\ b*a21 & a22 \end{vmatrix} = \begin{vmatrix} b*a11 & b*a12\\ a21 & a22 \end{vmatrix}

3.3.2 数乘的扩展

矩阵的数乘

  • 矩阵的标量乘法始终如此  (λ*A)=λ*(A)

行列式得数乘扩展

  • 行列式的标量乘法,|λ*A|=λ^n*|A| ,其中n是满秩矩阵A的秩/维度
  • 行列数乘法:  |Ann*Bnn| =|Ann|*|Bnn|
  • 行列数乘法:  |2Ann*Bnn| =|2Ann|*|Bnn| =2^n*|Ann|*|Bnn|
  1. 里面是矩阵的数乘,矩阵(假设是方阵)的数乘是每行每列都*λ
  2. 而行列式的数乘是  某1行/列*λ
  3. 因此每行的λ 都可以提出来,因此是n 个λ 相乘=λ^n

3.4 乘法

  • 矩阵乘法
  1. 矩阵乘法:点乘
  2. 矩阵乘法:叉乘
  • 行列式应该只有标量乘法,没有其他乘法吧?

4 初等线性变换的不同

线性变换包含,行的线性变换和列的线性变换

行的线性变换

  1. 行之间,交换
  2. 某行乘以倍数
  3. 某行乘倍数+到其他行

列的线性变换

  1. 列之间,交换
  2. 某列乘以倍数
  3. 某列乘倍数+到其他列

4.1 对矩阵进行线性变换

  • 无论是线性行变换,还是线性列变换,矩阵还是等价得
  1. 交换某行/列
  2. 倍数
  3. 倍加
  • 矩阵进行线性变换后的结果

  1. 线性变换前后系统的特征值不变;
  2. 线性变换前后系统的传递函数矩阵不变;

4.2 对行列式进行线性变换

  • 交换:如果交换行列式|A| 的任意两行/列,增加一个负号-
  • 倍数:如果行列式|A| 某1行或列*λ,|A| 变成 λ*|A|
  • 倍加:如果行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|
  • 总结,只有进行倍加的线性变换之后,行列式才不变化

解释原因

  • 因为行列式其实代表有向的面积比,所以交换行列式|A| 的任意两行/列,增加一个负号-
  • 因为行列式的标量乘法 λ*|A|= 把行列式的某1行/列* λ,所以行列式|A| 某1行或列*λ,|A| 变成 λ*|A|

  • 因为行列式其实代表有向的面积比,所以行列式|A| 某1行或列*λ后,再加到另外某1行/列,|A| 不变还是=|A|

相关文章:

线性代数的学习和整理12: 矩阵与行列式,计算上的差别对比

目录 1 行列式和矩阵的比较 2 简单总结矩阵与行列式的不同 3 加减乘除的不同 3.1 加法不同 3.2 减法不同 3.3 标量乘法/数乘 3.3.1 标准的数乘对比 3.3.2 数乘的扩展 3.4 乘法 4 初等线性变换的不同 4.1 对矩阵进行线性变换 4.2 对行列式进行线性变换 1 行列式和…...

2023年MySQL核心技术面试第一篇

目录 一 . 存储:一个完整的数据存储过程是怎样的? 1.1 数据存储过程 1.1.1 创建MySQl 数据库 1.1.1.1 为什么我们要先创建一个数据库,而不是直接创建数据表? 1.1.1.2基本操作部分 1.2 选择索引问题 二 . 字段:这么多的…...

linux启动jar 缺失lib

linux启动jar包时,找不到报错 [rootebs-141185 xl-admin]# java -Djava.library.path/home/kabangke/xl-admin/lib -jar /home/kabangke/xl-admin/xl-admin.jar Exception in thread "main" java.lang.NoClassDefFoundError: org/springframework/web/se…...

【Bash】常用命令总结

文章目录 1. 文件查询1.1 查看文件夹内(包含子文件夹)文件数量1.2 查看文件夹大小 任务简介: 对bash常用命令进行总结。 任务说明: 对平时工作中使用bash的相关命令做一个记录和说明,方便以后查阅。 1. 文件查询 1.…...

小研究 - Java虚拟机性能及关键技术分析

利用specJVM98和Java Grande Forum Benchmark suite Benchmark集合对SJVM、IntelORP,Kaffe3种Java虚拟机进行系统测试。在对测试结果进行系统分析的基础上,比较了不同JVM实现对性能的影响和JVM中关键模块对JVM性能的影响,并提出了提高JVM性能的一些展望。…...

Repo manifests默认default.xml清单文件中的各个标签详解

Repo简介 “Repo” 是一个用于管理多个Git存储库的工具,通常与Google的Android开发项目一起使用。它允许您在一个命令下轻松地进行多个Git存储库的同步、下载和管理。 repo下载安装 从清华镜像源下载 mkdir ~/bin PATH~/bin:$PATH curl https://mirrors.tun…...

javacv基础02-调用本机摄像头并预览摄像头图像画面视频

引入架包&#xff1a; <dependency><groupId>org.openpnp</groupId><artifactId>opencv</artifactId><version>4.5.5-1</version></dependency><dependency><groupId>org.bytedeco</groupId><artifactId…...

【Nginx21】Nginx学习:FastCGI模块(三)缓冲区与响应头

Nginx学习&#xff1a;FastCGI模块&#xff08;三&#xff09;缓冲区与响应头 缓存相关的内容占了 FastCGI 模块将近一小半的内容&#xff0c;当然&#xff0c;用过的人可能不多。而今天的内容说实话&#xff0c;我平常也没怎么用过。第一个是缓冲区相关的知识&#xff0c;其实…...

正则表达式(常用字符简单版)

量词 字符类 边界匹配 分组和捕获 特殊字符 字符匹配 普通字符&#xff1a;普通字符按照字面意义进行匹配&#xff0c;例如匹配字母 "a" 将匹配到文本中的 "a" 字符。元字符&#xff1a;元字符具有特殊的含义&#xff0c;例如 \d 匹配任意数字字符&#xf…...

从零开始学习Python爬虫:详细指南

导言&#xff1a; 随着互联网的迅速发展&#xff0c;大量的数据可供我们利用。而Python作为一种简单易学且功能强大的编程语言&#xff0c;被广泛应用于数据分析和处理。学习Python爬虫技术&#xff0c;能够帮助我们从互联网上获取数据&#xff0c;并进行有效地分析和利用。本文…...

分布式计算框架:Spark、Dask、Ray

目录 什么是分布式计算 分布式计算哪家强&#xff1a;Spark、Dask、Ray 2 选择正确的框架 2.1 Spark 2.2 Dask 2.3 Ray 什么是分布式计算 分布式计算是一种计算方法&#xff0c;和集中式计算是相对的。 随着计算技术的发展&#xff0c;有些应用需要非常巨大的计算能力才…...

什么是伪类链(Pseudo-class Chaining)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ Pseudo-class Chaining⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚…...

每日一题:leetcode 57 插入区间

给你一个 无重叠的 &#xff0c;按照区间起始端点排序的区间列表。 在列表中插入一个新的区间&#xff0c;你需要确保列表中的区间仍然有序且不重叠&#xff08;如果有必要的话&#xff0c;可以合并区间&#xff09;。 示例 1&#xff1a; 输入&#xff1a;intervals [[1,3…...

第五节:实现自己的第一个environment

本专栏是强化学习运用在买卖股票之上的入门学习内容。 主要解决强化学习代码落地和代码实践,不需要学习相关数学原理,直观简单的带领读者入门强化学习炒股。 查看本专栏完整内容,请访问:https://blog.csdn.net/windanchaos/category_12391143.html 本文发布地址:https://b…...

无套路,财务数据分析-多组织损益表分析分享

在报表众多的财务数据分析中&#xff0c;损益表是老板们最关注的报表&#xff0c;特别是当有多组织时&#xff0c;损益表的分析就变得更加重要了。以前受限于数据分析工具&#xff0c;做损益表分析时很难做到多维度灵活分析&#xff0c;但随着BI数据可视化工具的发展&#xff0…...

Java并发编程第6讲——线程池(万字详解)

Java中的线程池是运用场景最多的并发框架&#xff0c;几乎所有需要异步或并发执行任务的程序都可以使用线程池&#xff0c;本篇文章就详细介绍一下。 一、什么是线程池 定义&#xff1a;线程池是一种用于管理和重用线程的技术&#xff08;池化技术&#xff09;&#xff0c;它主…...

AI + Milvus:将时尚应用搭建进行到底

在上一篇文章中&#xff0c;我们学习了如何利用人工智能技术&#xff08;例如开源 AI 向量数据库 Milvus 和 Hugging Face 模型&#xff09;寻找与自己穿搭风格相似的明星。在这篇文章中&#xff0c;我们将进一步介绍如何通过对上篇文章中的项目代码稍作修改&#xff0c;获得更…...

归并排序(Java 实例代码)

目录 归并排序 一、概念及其介绍 二、适用说明 三、过程图示 四、Java 实例代码 MergeSort.java 文件代码&#xff1a; 归并排序 一、概念及其介绍 归并排序&#xff08;Merge sort&#xff09;是建立在归并操作上的一种有效、稳定的排序算法&#xff0c;该算法是采用分…...

【VUE】数字动态变化到目标值-vue-count-to

vue-count-to是一个Vue组件&#xff0c;用于实现数字动画效果。它可以用于显示从一个数字到另一个数字的过渡动画。 插件名&#xff1a;vue-count-to 官方仓库地址&#xff1a;GitHub - PanJiaChen/vue-countTo: Its a vue component that will count to a target number at a…...

Mysql /etc/my.cnf参数详解(二)

#buffer相关 #buffer pool根据实际内存大小调整,标准为物理内存的50% innodb_buffer_pool_size15996M //默认值128M&#xff0c;innodb_buffer_pool_size | 134217728 key_buffer_size 33554432 #根据物理内存大小设置 确保每个instance内的内存2G左右 <5000 1,>5000 &…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...