当前位置: 首页 > news >正文

数据结构之树型结构

    • 相关概念
    • 树的表示
    • 二叉树
      • 二叉树性质
      • 二叉树储存
    • 实现一颗二叉树
      • 创建
      • 遍历(前中后序)
      • 获取树中节点个数
      • 获取叶子节点个数
      • 获取第k层节点个数
      • 获取二叉树高度
      • 检测值为value元素是否存在
      • 层序遍历(需要队列来实现)
      • 判断是否为完全二叉树(需要队列来实现)

相关概念

在这里插入图片描述
重点概念:后续学习将会反反复复出现
在这里插入图片描述

对我们当前学习稍微不重要:

在这里插入图片描述

树的表示

树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法(AVL树、红黑树、B树会用到)、孩子兄弟表示法等等。我们了解一下孩子兄弟表示法:
在这里插入图片描述
代码表示:

class Node{int value;//我们当前学习就是简简单单的存个int数字Node firstChild;Node nextNorther;}

二叉树

二叉树:每一个节点的度小于等于2;其实就是每一个节点的孩子个数不超过两个。二叉树的有次序是指你把右子树放左边画出来,结果就是两个不同的树
任意二叉树都是由以下的情况组合的:
在这里插入图片描述
满二叉树:每层的结点数都达到最大值;如果层数是k;满二叉树的节点个数为2^k-1

完全二叉树:你按左右到上下编号1-n一定是连续的
在这里插入图片描述

二叉树性质

前提:规定第一层是根节点的二叉树
1:第i层最多节点个数:2^(i-1)
2:深度为k;总节点个数最多是2^k-1 (完全二叉树的情况)

3:非常重要;任意的二叉树;叶子节点个数比度为2的节点个数多一个(度为0就是叶子,不涉及到度为1的节点)
n0=n2+1 (如果要把n1也扯上关系;使用n-1=n00+n11+n2*2;n是总节点个数;解释:一颗n个节点的树有N-1条边;而叶子节点不产生边;度为1的节点只产生一条边;度为2的节点产生两条边)
比如有4层:
其实就是;2的4次方等于2的3次方+2都平方+2的1次方+2的0次方+1。
题目:
某二叉树共有399个结点,其中有199个度为2的结点,则该二叉树中的叶子结点数为()
A不存在这样的二叉树
B200
C198
D199

4:具有n个结点的完全二叉树的深度k为log(n+1)向上取整
不受到你最后层节点个数影响,最后层一个跟2的n-1个是一样,因为用最大节点个数推导出来的
5:对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子
注意:完全二叉树度为1的节点要么是1个,要么是0个。奇数个节点就没有度为1的节点,偶数个节点就有一个度为1的节点。如果题目告诉你2n个节点;那就说明有度为1的节点

二叉树储存

在这里插入图片描述
如何遍历:
先序:根—>左子树---->右子树(这个比较容易理解)
中序:左子树—>根—>右子树(先访问左子树,然后你左子树又得按照中序进行)
后序:左子树–>右子树—>根

实现一颗二叉树

创建

//创建一颗树
class  tree{//树的节点,还是内部类实现,类似链表class Listnode{//一个节点包含三个域char val;Listnode left;//左边Listnode right;//右边public Listnode(char val) {this.val = val;}}public Listnode create(){//先把节点和值创建好,然后再绑关系Listnode A=new Listnode('A');Listnode B=new Listnode('B');Listnode C=new Listnode('C');Listnode D=new Listnode('D');Listnode E=new Listnode('E');Listnode F=new Listnode('F');Listnode G=new Listnode('G');//这里的B和C是节点A.left=B;A.right=C;B.left=D;B.right=E;C.left=F;C.right=G;return A;//返回根节点}

遍历(前中后序)

前序:

   public void print1(Listnode root){if(root==null) {return ;}System.out.println(root.val);print1(root.left);print1(root.right);}

中序:这次我们就不打印;遍历把值存在顺序表里

    public List<Character> print2(Listnode root){List<Character> list=new ArrayList<>();if(root==null){return list;}//System.out.println(root.val);list.add(root.val);print2(root.left);print2(root.right);return list;}

后序:

public List<Character> print3(Listnode root){List<Character> ret=new ArrayList<>();if(root==null){return ret;}//System.out.println(root.val);ret.add(root.val);//先把头放进去,然后左边放一个表,右边放一个表,最后放到retList<Character> s=print3(root.left);ret.addAll(s);List<Character> s1=print3(root.right);ret.addAll(s1);return ret;
}

获取树中节点个数

//获取树中节点的个数int num=0;public int size(Listnode root){//遍历计数器if(root==null) {return 0;}num++;size(root.left);size(root.right);return num;}//子问题计数public int size1(Listnode root){if(root==null) {return 0;}int tmp =size1(root.left)+size1(root.right)+1;//(把走到每个节点都分为左边、右边和它自己)return tmp;}

获取叶子节点个数

   // 获取叶子节点的个数int ret3=0;public  void getLeafNodeCount(Listnode root){
//自己为空,肯定就结束了if(root==null){return ;}//如果左边和右边同时为空就计数if(root.left==null&&root.right==null){ret3++;}getLeafNodeCount(root.left);getLeafNodeCount(root.right);}// 子问题思路-求叶子结点个数public  int getLeafNodeCount1(Listnode root){
//自己为空,肯定就结束了if(root==null){return 0;}//如果左边和右边同时为空就计数if(root.left==null&&root.right==null){return 1;}return getLeafNodeCount1(root.left)+getLeafNodeCount1(root.right);}

获取第k层节点个数

   // 获取第K层节点的个数,直接子问题public  int getKLevelNodeCount(Listnode root,int k){
//我们之前不是求了一棵树节点个数吗;假设我要求k层,在k-1的左右子树的和if(root==null||k<=0) {return -1;}if(k==1){//这时候条件就不再是root.left==null&&root.right==null;而是k-1层的孩子节点我都要计算return 1;}int tmp=getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right,k-1);return tmp;}

获取二叉树高度

非常巧妙:递归的结束root==null;返回上一级到叶子节点;发现height1>height2不成立;叶子节点的右边+1;如果是root.left遍历下的就返回给这里的值。画个图就好理解

  // 获取二叉树的高度public int getHeight(Listnode root) {if(root==null){return 0;}int height1=  getHeight(root.left);int height2= getHeight(root.right);if (height1>height2){return height1+1;//加1是关键,每结束一层+1}elsereturn height2+1;}

在这里插入图片描述

检测值为value元素是否存在

   // 检测值为value的元素是否存在public Listnode find(Listnode root, int val) {if (root == null) {return null;}if (root.val == val) {return root;}find(root.left, val);//这里应该把find(root.left,val)存到ret里,避免下面用这个又要重复再递归一次if (find(root.left, val).val == val) {return root;}     //如果我在左边找到就不去右边//如果我在右边找到就直接结束,如果都没找到find(root.right, val);if (find(root.right, val).val == val) {return root;}return null;}

层序遍历(需要队列来实现)

因为二叉树;没法按这种顺序来遍历;就得依靠别的数据结构
在这里插入图片描述
这样子它的打印顺序就是从左到右;画图分析好
在这里插入图片描述

判断是否为完全二叉树(需要队列来实现)

队列;逻辑:按层次遍历弹出,把Null也放入队列里,当弹出Null的时候发现队列全为Null,就说明是完全二叉树
。不全为null就不是完全二叉树。

   // 判断一棵树是不是完全二叉树   ,这题逻辑还是非常清晰public boolean isCompleteTree(TreeNode root) {if(root == null) {return true;}Queue<TreeNode> qu = new LinkedList<>();qu.offer(root);while (!qu.isEmpty()) {TreeNode cur = qu.poll();if(cur != null) {qu.offer(cur.left);qu.offer(cur.right);}else {break;}}//判断队列剩下的值 是否有 非null的数据while (!qu.isEmpty()) {TreeNode pop = qu.poll();if(pop != null) {return false;}}return true;}

相关文章:

数据结构之树型结构

相关概念树的表示二叉树二叉树性质二叉树储存 实现一颗二叉树创建遍历&#xff08;前中后序&#xff09;获取树中节点个数获取叶子节点个数获取第k层节点个数获取二叉树高度检测值为value元素是否存在层序遍历&#xff08;需要队列来实现&#xff09;判断是否为完全二叉树&…...

指针进阶详解

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力&#xff0c;一起奔赴大厂。 目录 1.字符指针 2.指针数组 3.数组指针 4.数组传…...

QGIS 如何添加天地图

相信很多小伙伴在 QGIS 里面添加天地图的时候一定感觉很困惑,按照官网的操作申请 Key 之后,添加相对应的服务地址之后看不到地图或者地图不正常显示,今天我们就来解决这个问题 以下所有操作基于 QGIS 3.22 版本 申请 Key 1. 添加天地图的第一步需要申请 Key,首先要注册天…...

PHP8内置函数中的数学函数-PHP8知识详解

php8中提供了大量的内置函数&#xff0c;以便程序员直接使用常见的内置函数包括数学函数、变量函数、字符串函数、时间和日期函数等。今天介绍内置函数中的数学函数。 本文讲到了数学函数中的随机数函数rand()、舍去法取整函数floor()、向上取整函数 ceil()、对浮点数进行四舍…...

云计算企业私有云平台建设方案PPT

导读&#xff1a;原文《云计算企业私有云平台建设方案PPT》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 喜欢文章&#xff0c;您可以点赞评论转发本文&#xff0c;…...

ORA-01174: DB_FILES be compatible RAC rolling fashion complete outage

How to change the DB_FILES parameter in RAC (Doc ID 1636681.1)​编辑To Bottom In this Document Goal Solution APPLIES TO: Oracle Database - Enterprise Edition - Version 10.1.0.2 and later Oracle Database Cloud Schema Service - Version N/A and later Oracle…...

线性代数(五) 线性空间

前言 《线性代数(三) 线性方程组&向量空间》我通过解线性方程组的方式去理解线性空间。此章从另一个角度去理解 空间是什么 大家较熟悉的&#xff1a;平面直角坐标系是最常见的二维空间 空间由无穷多个坐标点组成 每个坐标点就是一个向量 反过来&#xff0c;也可说&…...

kafka--技术文档--spring-boot集成基础简单使用

阿丹&#xff1a; 查阅了很多资料了解到&#xff0c;使用了spring-boot中整合的kafka的使用是被封装好的。也就是说这些使用其实和在linux中的使用kafka代码的使用其实没有太大关系。但是逻辑是一样的。这点要注意&#xff01; 使用spring-boot整合kafka 1、导入依赖 核心配…...

【核磁共振成像】部分傅里叶重建

目录 一、部分傅里叶重建二、部分傅里叶重建算法2.1 填零2.2 零差处理 一、部分傅里叶重建 在部分傅里叶采集中&#xff0c;数据并不是绕K空间中心对称收集的&#xff0c;而是K空间的一半是完全填充的&#xff0c;另一半只收集了一小部分数据。   部分傅里叶采集所依据的原理…...

React中的flushSync与Vue中的nextTick的比较

React中的flushSync与Vue中的nextTick是两种用于处理异步更新的机制。它们在React和Vue这两个流行的前端框架中起着重要的作用。 首先&#xff0c;让我们来看看flushSync。在React中&#xff0c;当需要更新UI时&#xff0c;React会将更新操作放入一个队列中&#xff0c;然后异…...

golang设置国内镜像源

以windows为例&#xff0c; 在cmd 窗口中执行下列语句 go env -w GO111MODULEon go env -w GOPROXYhttps://goproxy.io,direct 或者 1.运行 go env -w GO111MODULEon //开启mod 运行 go env -w GOPROXYhttps://goproxy.cn,direct //设置代理 执…...

linux切换到root没有conda环境

这个错是因为 没有将anaconda添加到环境变量 export PATH"/home/tao/anaconda3/bin:$PATH"然后 source ~/.bashrc或者写入 nano ~/.bashrc在文件的末尾添加以下行 export PATH"/home/tao/anaconda3/bin:$PATH"再 source ~/.bashrc就可以了...

数据库——redis介绍

文章目录 redis是什么&#xff1f;分布式缓存常见的技术选型方案有哪些&#xff1f;说一下 Redis 和 Memcached 的区别和共同点&#xff1f; redis是什么&#xff1f; 简单来说 Redis 就是一个使用 C 语言开发的数据库&#xff0c;不过与传统数据库不同的是 Redis 的数据是存在…...

从C语言到C++_34(C++11_下)可变参数+ lambda+function+bind+笔试题

目录 1. 可变参数模板 1.1 展开参数包 1.1.1 递归函数方式展开 1.1.2 逗号表达式展开 1.2 emplace相关接口 2. lambda表达式&#xff08;匿名函数&#xff09; 2.1 C11之前函数的缺陷 2.2 lambda表达式语法 2.3 函数对象与lambda表达式 3. 包装器 3.1 function包装器…...

喜报|星瑞格荣获“2022-2023年度国产数据库应用优秀解决方案”奖项

近日&#xff0c;赛迪网为表彰数字赛道上的先行者&#xff0c;联合《数字经济》杂志社和北京科创互联&#xff0c;共同组织以“树立行业标杆&#xff0c;引领服务创新”为中心的“2022-2023年度产业数字服务案例及创新成果征集活动”。该活动旨在鼓励各行业数字化应用技术创新树…...

【Spring Cloud系列】- 分布式系统中实现幂等性的几种方式

【Spring Cloud系列】- 分布式系统中实现幂等性的几种方式 文章目录 【Spring Cloud系列】- 分布式系统中实现幂等性的几种方式一、概述二、什么是幂等性三、幂等性需关注几个重点四、幂等性有什么用五、常见用来保证幂等的手段5.1 MVCC方案5.2 去重表5.3 去重表5.4 select in…...

2023.8.26-2023.9.3 周报【3D+GAN+Diffusion基础知识+训练测试】

目录 学习目标 学习内容 学习时间 学习产出 学习目标 1. 3D方向的基础知识 2. 图像生成的基础知识&#xff08;GAN \ Diffusion&#xff09; 3. 训练测试GAN和Diffusion 学习内容 1. 斯坦福cv课程-3D &#xff08;网课含PPT&#xff09; 2. sjtu生成模型课件 3. ge…...

如何使用CSS创建渐变阴影?

随着网络的不断发展&#xff0c;制作漂亮的 UI 是提高客户在网站上的参与度的最重要的工作之一。改善前端外观的方法之一是在 CSS 中应用渐变阴影。应用渐变阴影的两种最重要的方法是线性渐变和径向渐变。 渐变阴影可用于吸引用户对特定信息的注意力&#xff0c;应用悬停或焦点…...

perl send HTTP Request

perl send HTTP Request 使用Perl进行发送HttP请求 use LWP::UserAgent; use HTTP::Request; use HTTP::Headers; use JSON::PP;my $test_url "htttp://127.0.0.1:8080/update/";sub sendHttp{my $user_agent LWP::UserAgent->new(timeout>60);my ($url, $…...

阿里云CDN缓存预热与刷新以及常见的故障汇总

文章目录 1.为CDN缓存的文件增加过期时间2.CDN缓存预热配置3.CDN缓存刷新配置4.常见故障 CDN缓存预热指的是主动将要缓存的文件推送到全国各地的CDN边缘加速器上&#xff0c;减少回源率&#xff0c;提供命中率。 缓存刷新指的是后期上传了同名的文件&#xff0c;之前的缓存已经…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001

qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类&#xff0c;直接把源文件拖进VS的项目里&#xff0c;然后VS卡住十秒&#xff0c;然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分&#xff0c;导致编译的时候找不到了。因…...