扩散模型实战(八):微调扩散模型
推荐阅读列表:
扩散模型实战(一):基本原理介绍
扩散模型实战(二):扩散模型的发展
扩散模型实战(三):扩散模型的应用
扩散模型实战(四):从零构建扩散模型
扩散模型实战(五):采样过程
扩散模型实战(六):Diffusers DDPM初探
扩散模型实战(七):Diffusers蝴蝶图像生成实战
微调在LLM中并不是新鲜的概念,从头开始训练一个扩散模型需要很长的时间,特别是使用高分辨率图像训练。那么其实我们可以在已经训练好的”去噪“扩散模型基础上使用微调数据集进行二次微调训练。
本文将介绍基于蝴蝶数据集上微调人脸生成的扩散模型:
一、环境准备
1.1 安装相关库
!pip install -qq diffusers datasets accelerate wandb open-clip-torch
1.2 登录Huggingface Hub
如果需要开源微调好的模型到Huggingface Hub上,那么需要使用如下代码登录,否则可忽略此步骤:
from huggingface_hub import notebook_loginnotebook_login()
1.3 导入相关库
import numpy as npimport torchimport torch.nn.functional as Fimport torchvisionfrom datasets import load_datasetfrom diffusers import DDIMScheduler, DDPMPipelinefrom matplotlib import pyplot as pltfrom PIL import Imagefrom torchvision import transformsfrom tqdm.auto import tqdmdevice = ("mps"if torch.backends.mps.is_available()else "cuda"if torch.cuda.is_available()else "cpu")
二、导入预训练的扩散模型
下面我们导入人脸生成的扩散模型,观察一下生成的效果,代码如下:
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")image_pipe.to(device);
查看生成的图像,代码如下:
images = image_pipe().imagesimages[0]

生成的效果虽然不错,但是速度稍微有点慢,其实有更快的采样器可以加速这一过程,比如下面介绍的DDIM
三、DDIM-更快的采样器
在生成图像的每一步中,模型都会接收一个带有噪声的输入,并且需要预测这个噪声,以此来估计没有噪声的完整图像是什么。这个过程被称为采样过程,在Diffusers库中,采样通过调度器控制的,之前的文章中介绍过DDPMScheduler调度器,本文介绍的DDIMScheduler可以通过更少的迭代周期来产生很好的采样样本(1000多步采样不是必须的)。
# 创建一个新的调度器并设置推理迭代次数scheduler = DDIMScheduler.from_pretrained("google/ddpm-celebahq-256")scheduler.set_timesteps(num_inference_steps=40)
scheduler.timesteps
# 输出tensor([975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 725,700, 675, 650, 625, 600, 575, 550, 525, 500, 475, 450, 425,400, 375, 350, 325, 300, 275, 250, 225, 200, 175, 150,125, 100, 75, 50, 25, 0])
下面使用4幅随机噪声图像进行循环采样,并观察每一步的输入与输出的”去噪“图像,代码如下:
# 从随机噪声开始x = torch.randn(4, 3, 256, 256).to(device)# batch size为4,三通道,长、宽均为256像素的一组图像# 循环一整套时间步for i, t in tqdm(enumerate(scheduler.timesteps)):# 准备模型输入:给“带躁”图像加上时间步信息model_input = scheduler.scale_model_input(x, t)# 预测噪声with torch.no_grad():noise_pred = image_pipe.unet(model_input, t)["sample"]# 使用调度器计算更新后的样本应该是什么样子scheduler_output = scheduler.step(noise_pred, t, x)# 更新输入图像x = scheduler_output.prev_sample# 时不时看一下输入图像和预测的“去噪”图像if i % 10 == 0 or i == len(scheduler.timesteps) - 1:fig, axs = plt.subplots(1, 2, figsize=(12, 5))grid = torchvision.utils.make_grid(x, nrow=4).permute(1, 2, 0)axs[0].imshow(grid.cpu().clip(-1, 1) * 0.5 + 0.5)axs[0].set_title(f"Current x (step {i})")pred_x0 = (scheduler_output.pred_original_sample)grid = torchvision.utils.make_grid(pred_x0, nrow=4).permute(1, 2, 0)axs[1].imshow(grid.cpu().clip(-1, 1) * 0.5 + 0.5)axs[1].set_title(f"Predicted denoised images (step {i})")plt.show()





第二步生成图像的采样器是DDPMScheduler,我们可以使用新的DDIMScheduler来代替DDPMScheduler看看image_pipe生成的效果是否有提升,代码如下:
image_pipe.scheduler = schedulerimages = image_pipe(num_inference_steps=40).imagesimages[0]

上述介绍了生成人脸的扩散模型以及生成的效果,也介绍了更快的采样器DDIMScheduler,下面我们使用蝴蝶数据集来微调人脸生成扩散模型:
四、微调人脸生成扩散模型
4.1 加载蝴蝶数据集
dataset_name = "huggan/smithsonian_butterflies_subset"dataset = load_dataset(dataset_name, split="train")image_size = 256batch_size = 4preprocess = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.5], [0.5]),])def transform(examples):images = [preprocess(image.convert("RGB")) for image inexamples["image"]]return {"images": images}dataset.set_transform(transform)train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
输出4幅蝴蝶图像,便于观察
print("Previewing batch:")batch = next(iter(train_dataloader))grid = torchvision.utils.make_grid(batch["images"], nrow=4)plt.imshow(grid.permute(1, 2, 0).cpu().clip(-1, 1) * 0.5 + 0.5)

4.2 微调人脸生成扩散模型
num_epochs = 2lr = 1e-5grad_accumulation_steps = 2optimizer = torch.optim.AdamW(image_pipe.unet.parameters(), lr=lr)losses = []for epoch in range(num_epochs):for step, batch in tqdm(enumerate(train_dataloader),total=len(train_dataloader)):clean_images = batch["images"].to(device)# 随机生成一个噪声,稍后加到图像上noise = torch.randn(clean_images.shape).to(clean_images.device)bs = clean_images.shape[0]# 随机选取一个时间步timesteps = torch.randint(0,image_pipe.scheduler.num_train_timesteps,(bs,),device=clean_images.device,).long()# 根据选中的时间步和确定的幅值,在干净图像上添加噪声# 此处为前向扩散过程noisy_images = image_pipe.scheduler.add_noise(clean_images,noise, timesteps)# 使用“带噪”图像进行网络预测noise_pred = image_pipe.unet(noisy_images, timesteps,return_dict=False)[0]# 对真正的噪声和预测的结果进行比较,注意这里是预测噪声loss = F.mse_loss(noise_pred, noise)# 保存损失值losses.append(loss.item())# 根据损失值更新梯度loss.backward()# 进行梯度累积,在累积到一定步数后更新模型参数if (step + 1) % grad_accumulation_steps == 0:optimizer.step()optimizer.zero_grad()print(f"Epoch {epoch} average loss: {sum(losses[-len(train_dataloader):])/len(train_dataloader)}")# 画出损失曲线,效果如图所示plt.plot(losses)

4.3 使用微调好的模型生成图像
x = torch.randn(8, 3, 256, 256).to(device)for i, t in tqdm(enumerate(scheduler.timesteps)):model_input = scheduler.scale_model_input(x, t)with torch.no_grad():noise_pred = image_pipe.unet(model_input, t)["sample"]x = scheduler.step(noise_pred, t, x).prev_samplegrid = torchvision.utils.make_grid(x, nrow=4)plt.imshow(grid.permute(1, 2, 0).cpu().clip(-1, 1) * 0.5 + 0.5)

从图中可以看出生成的图像有蝴蝶数据的风格。
4.4 保持微调好的扩散模型,并且上传到Huggingface Hub中
image_pipe.save_pretrained("my-finetuned-model")
from huggingface_hub import HfApi, ModelCard, create_repo, get_full_repo_name# 配置Hugging Face Hub,上传文件model_name = "ddpm-celebahq-finetuned-butterflies-2epochs"# 使用@param 脚本程序对上传到# Hugging Face Hub的文件进行命名local_folder_name = "my-finetuned-model" # @param脚本程序生成的名字,# 你也可以通过 image_pipe.save_pretrained('savename')自行指定description = "Describe your model here" # @paramhub_model_id = get_full_repo_name(model_name)create_repo(hub_model_id)api = HfApi()api.upload_folder(folder_path=f"{local_folder_name}/scheduler",path_in_repo="",repo_id=hub_model_id )api.upload_folder(folder_path=f"{local_folder_name}/unet", path_in_repo="",repo_id=hub_model_id )api.upload_file(path_or_fileobj=f"{local_folder_name}/model_index.json",path_in_repo="model_index.json",repo_id=hub_model_id,)# 添加一个模型卡片,这一步虽然不是必需的,但可以给他人提供一些模型描述信息content = f"""---license: mittags:- pytorch- diffusers- unconditional-image-generation- diffusion-models-class---# 用法from diffusers import DDPMPipelinepipeline = DDPMPipeline.from_pretrained(' {hub_model_id}')image = pipeline().images[0]image'''"""card = ModelCard(content)card.push_to_hub(hub_model_id)
微调Trick:
- 设置合适的batch_size,batch_size要在不超过GPU显存的前提下,尽量大一些,这样可以提高GPU计算效果;如果特别小,可以采用梯度累积的方式来更新模型参数,达到和大batch_size类似的效果,也就是多运行几次loss.backward(),再调用optimizer.step()和optimizer.zero_grad();
- 训练过程中,要时不时生成一些图像样本来观察模型性能;
- 训练过程中,可以把损失值、生成的图像样本等信息记录在日志中,可以使用Weights and Biases、TensorBoard等工具;
相关文章:
扩散模型实战(八):微调扩散模型
推荐阅读列表: 扩散模型实战(一):基本原理介绍 扩散模型实战(二):扩散模型的发展 扩散模型实战(三):扩散模型的应用 扩散模型实战(四…...
Android 全局控件属性设置
一 使用需求: 如 设置全局字体、全局文本属性设置 二 实现方式: 在App使用的主题中,添加属性及属性值 如给所有的文本设置属性,注释部分作用是设置应用全局字体 <style name"Theme.AppDemo" parent"Base.Theme.AppDemo&q…...
下面是实践百度飞桨上面的pm2.5分类项目_logistic regression相关
part1:数据的引入,和前一个linear regression基本是一样 part2:数据解析——也就是数据的“规格化” 首先,打算用dataMat[]和labelMat[]数据存储feature和label,并且文件变量fr 然后,是这个for line in fr.readlines()循环&#…...
阿里云误删Python后域yum报错解决方案
阿里云误删Python后域yum报错解决方案 1:找回所有依赖 这里依赖可能很多,也搞不清楚有哪些,建议买一台临时服务器,系统选择跟你当前的系统一致的,配置选最低就行 2:登录临时服务器,创建临时文件夹 mkdir /usr/local/yum-fix cd /usr/local/yum-fix3:查找并下载所有云依赖 r…...
unordered-------Hash
✅<1>主页:我的代码爱吃辣📃<2>知识讲解:数据结构——哈希表☂️<3>开发环境:Visual Studio 2022💬<4>前言:哈希是一种映射的思想,哈希表即使利用这种思想,…...
数据仓库总结
1.为什么要做数仓建模 数据仓库建模的目标是通过建模的方法更好的组织、存储数据,以便在性能、成本、效率和数据质量之间找到最佳平衡点。 当有了适合业务和基础数据存储环境的模型(良好的数据模型),那么大数据就能获得以下好处&…...
hadoop学习:mapreduce入门案例二:统计学生成绩
这里相较于 wordcount,新的知识点在于学生实体类的编写以及使用 数据信息: 1. Student 实体类 import org.apache.hadoop.io.WritableComparable;import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;public class Stude…...
自学TypeScript-基础、编译、类型
自学TypeScript-基础、编译、类型 TS 编译为 JS类型支持类型注解基础类型typeof 运算符高级类型class 类构造函数和实例方法继承可见性只读 类型兼容性交叉类型泛型泛型约束多个泛型泛型接口泛型类泛型工具 索引签名类型映射类型索引查询(访问)类型 类型声明文件 TypeScript 是…...
nginx配置https
1.安装nginx 安装完成后检查 nginx -V2.申请证书与上传 阿里云申请免费的证书 然后上传到某个目录 3.修改nginx配置 #user nobody; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info;#pid …...
windows Etcd的安装与使用
一、简介 etcd是一个分布式一致性键值存储,其主要用于分布式系统的共享配置和服务发现。 etcd由Go语言编写 二、下载并安装 1.下载地址: https://github.com/coreos/etcd/releases 解压后的目录如下:其中etcd.exe是服务端,e…...
【py】为什么用 import tkinter 不能运行
为什么用 import tkinter 不能运行 ━━━━━━━━━━━━━━━━━━━━━━ 要显示一个信息框,为什么用 import tkinter 不能运行,改成from tkinter import messagebox 就可以运行了? 可能是因为您的代码中只使用了 messagebox 这个模…...
【深度学习】实验04 交叉验证
文章目录 交叉验证划分自定义划分K折交叉验证留一交叉验证留p交叉验证随机排列交叉验证分层K折交叉验证分层随机交叉验证 分割组 k-fold分割留一组分割留 P 组分割随机分割时间序列分割 交叉验证 # 导入相关库# 交叉验证所需函数 from sklearn.model_selection import train_t…...
whisper语音识别部署及WER评价
1.whisper部署 详细过程可以参照:🏠 创建项目文件夹 mkdir whisper cd whisper conda创建虚拟环境 conda create -n py310 python3.10 -c conda-forge -y 安装pytorch pip install --pre torch torchvision torchaudio --extra-index-url 下载whisper p…...
java太卷了,怎么办?
忧虑: 马上就到30岁了,最近对于自己职业生涯的规划甚是焦虑。在网站论坛上,可谓是哀鸿遍野,大家纷纷叙述着自己被裁后求职的艰辛路程,这更加加深了我的忧虑,于是在各大论坛开始“求医问药”,想…...
android多屏触摸相关的详解方案-安卓framework开发手机车载车机系统开发课程
背景 直播免费视频课程地址:https://www.bilibili.com/video/BV1hN4y1R7t2/ 在做双屏相关需求开发过程中,经常会有对两个屏幕都要求可以正确触摸的场景。但是目前我们模拟器默认创建的双屏其实是没有办法进行触摸的 修改方案1 静态修改方案 使用命令…...
微信小程序 实时日志
目录 实时日志 背景 如何使用 如何查看日志 注意事项 实时日志 背景 为帮助小程序开发者快捷地排查小程序漏洞、定位问题,我们推出了实时日志功能。从基础库2.7.1开始,开发者可通过提供的接口打印日志,日志汇聚并实时上报到小程序后台…...
Spring AOP基于注解方式实现和细节
目录 一、Spring AOP底层技术 二、初步实现AOP编程 三、获取切点详细信息 四、 切点表达式语法 五、重用(提取)切点表达式 一、Spring AOP底层技术 SpringAop的核心在于动态代理,那么在SpringAop的底层的技术是依靠了什么技术呢&#x…...
CVPR2023论文及代码合集来啦~
以下内容由马拉AI整理汇总。 下载:点我跳转。 狂肝200小时的良心制作,529篇最新CVPR2023论文及其Code,汇总成册,制作成《CVPR 2023论文代码检索目录》,包括以下方向: 1、2D目标检测 2、视频目标检测 3、…...
基于ETLCloud的自定义规则调用第三方jar包实现繁体中文转为简体中文
背景 前面曾体验过通过零代码、可视化、拖拉拽的方式快速完成了从 MySQL 到 ClickHouse 的数据迁移,但是在实际生产环境,我们在迁移到目标库之前还需要做一些过滤和转换工作;比如,在诗词数据迁移后,发现原来 MySQL 中…...
TDesign在按钮上加入图标组件
在实际开发中 我们经常会遇到例如 添加或者查询 我们需要在按钮上加入图标的操作 TDesign自然也有预备这样的操作 首先我们打开文档看到图标 例如 我们先用某些图标 就可以点开下面的代码 可以看到 我们的图标大部分都是直接用tdesign-icons-vue 导入他的组件就可以了 而我…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...
