当前位置: 首页 > news >正文

(动态规划) 剑指 Offer 60. n个骰子的点数 ——【Leetcode每日一题】

❓ 剑指 Offer 60. n个骰子的点数

难度:中等

n 个骰子扔在地上,所有骰子朝上一面的点数之和为 s 。输入 n,打印出s的所有可能的值出现的概率。

你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

示例 1:

输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]

示例 2:

输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]

限制

  • 1 <= n <= 11

💡思路:动态规划

使用一个二维数组 dp 存储点数出现的次数,其中 dp[i][j] 表示前 i 个骰子产生点数 j 的次数。

只看第 n 枚骰子,它的点数可能为 1, 2, 3, ... , 6 ,因此投掷完 n 枚骰子后点数 j 出现的次数,可以由投掷完 n−1 枚骰子后,对应点数 j−1, j−2, j−3, ..., j−6 出现的次数之和转化过来。

for (第n枚骰子的点数 k = 1; k <= 6; k++) {dp[n][j] += dp[n-1][j - k]
}

写成数学公式是这样的:
d p [ n ] [ j ] = ∑ i = 1 6 d p [ n − 1 ] [ j − k ] dp[n][j]=\sum_{i=1}^6dp[n-1][j-k] dp[n][j]=i=16dp[n1][jk]
n 表示阶段,j 表示投掷完 n 枚骰子后的点数和,k 表示第 n 枚骰子会出现的六个点数。

⭐️ 空间优化: 旋转数组

观察发现每个阶段的状态都只和它前一阶段的状态有关,因此我们不需要用额外的一维来保存所有阶段。

  • 用两个一维数组交替变换存储。

🍁代码:(C++、Java)

C++

class Solution {
public:vector<double> dicesProbability(int n) {int maxsum = n * 6;vector<vector<long long>> dp(n + 1, vector<long long>(maxsum + 1));for(int i = 1; i <= 6; i++){dp[1][i] = 1;}for(int i = 2; i <= n; i++){for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k <= j; k++){dp[i][j] += dp[i - 1][j - k];}}}long long totalnum = pow(6, n);vector<double> ans(n * 5 + 1);for(int i = n; i <= maxsum; i++){ans[i - n] = (double)dp[n][i] / totalnum;}return ans;}
};

⭐️ 空间优化: 旋转数组

C++

class Solution {
public:vector<double> dicesProbability(int n) {int maxsum = n * 6;vector<vector<long long>> dp(2, vector<long long>(maxsum + 1));for(int i = 1; i <= 6; i++){dp[0][i] = 1;}int flag = 1; //旋转标记for(int i = 2; i <= n; i++, flag = 1 - flag){for(int j = 0; j <= i * 6; j++){dp[flag][j] = 0; //旋转数组清零}for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k < j; k++){dp[flag][j] += dp[1 - flag][j - k];}}}long long totalnum = pow(6, n);vector<double> ans(n * 5 + 1);for(int i = n; i <= maxsum; i++){ans[i - n] = (double)dp[1 - flag][i] / totalnum;}return ans;}
};

Java

class Solution {public double[] dicesProbability(int n) {int maxsum = n * 6;long[][] dp = new long[2][maxsum + 1];for(int i = 1; i <= 6; i++){dp[0][i] = 1;}int flag = 1; //旋转标记for(int i = 2; i <= n; i++, flag = 1 - flag){for(int j = 0; j <= i * 6; j++){dp[flag][j] = 0; //旋转数组清零}for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k < j; k++){dp[flag][j] += dp[1 - flag][j - k];}}}double totalnum = Math.pow(6, n);double[] ans = new double[n * 5 + 1];for(int i = n; i <= maxsum; i++){ans[i - n] = dp[1 - flag][i] / totalnum;}return ans;}
}

🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:

  • 时间复杂度 O ( n 2 ) O(n^2) O(n2), 状态转移循环 n−1 轮;每轮中,当 i =2, 3, ..., n时,对应循环数量分别为 6×6, 11×6, ... , [5(n−1)+1]×6 ;因此总体复杂度为 O ( ( n − 1 ) × 6 + [ 5 ( n − 1 ) + 1 ] 2 × 6 ) O((n−1)×\frac{6+[5(n-1)+1]}2×6) O((n1)×26+[5(n1)+1]×6),即等价于 O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度 O ( n ) O(n) O(n)dp 数组需要 2*n*6的空间,所以 O ( 2 ∗ n ∗ 6 ) = O ( n ) O(2*n*6) = O(n) O(2n6)=O(n)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我LeetCode主页 / CSDN—力扣专栏,每日更新!

注: 如有不足,欢迎指正!

相关文章:

(动态规划) 剑指 Offer 60. n个骰子的点数 ——【Leetcode每日一题】

❓ 剑指 Offer 60. n个骰子的点数 难度&#xff1a;中等 把 n 个骰子扔在地上&#xff0c;所有骰子朝上一面的点数之和为 s 。输入 n&#xff0c;打印出s的所有可能的值出现的概率。 你需要用一个浮点数数组返回答案&#xff0c;其中第 i 个元素代表这 n 个骰子所能掷出的点…...

ArrayList与顺序表

文章目录 一. 顺序表是什么二. ArrayList是什么三. ArrayList的构造方法四. ArrayList的常见方法4.1 add()4.2 size()4.3 remove()4.4 get()4.5 set()4.6 contains()4.7 lastIndexOf()和 indexOf(&#xff09;4.8 subList()4.9 clear() 以上就是ArrayList的常见方法&#xff01…...

【【萌新的STM32-22中断概念的简单补充】】

萌新的STM32学习22-中断概念的简单补充 我们需要注意的是这句话 从上面可以看出&#xff0c;STM32F1 供给 IO 口使用的中断线只有 16 个&#xff0c;但是 STM32F1 的 IO 口却远远不止 16 个&#xff0c;所以 STM32 把 GPIO 管脚 GPIOx.0~GPIOx.15(xA,B,C,D,E,F,G)分别对应中断…...

Java 中数据结构HashMap的用法

Java HashMap HashMap 是一个散列表&#xff0c;它存储的内容是键值对(key-value)映射。 HashMap 实现了 Map 接口&#xff0c;根据键的 HashCode 值存储数据&#xff0c;具有很快的访问速度&#xff0c;最多允许一条记录的键为 null&#xff0c;不支持线程同步。 HashMap 是…...

Request对象和response对象

一、概念 request对象和response对象是通过Servlet容器&#xff08;如Tomcat&#xff09;自动创建并传递给Servlet的。 Servlet容器负责接收客户端的请求&#xff0c;并将请求信息封装到request对象中&#xff0c;然后将request对象传 递给相应的Servlet进行处理。类似地&…...

设计模式之桥接模式

文章目录 一、介绍二、案例1. 组件抽象化2. 桥梁抽象化 一、介绍 桥接模式&#xff0c;属于结构型设计模式。通过提供抽象与实现之间的桥接结构&#xff0c;把抽象化与实现化解耦&#xff0c;使得二者可以独立变化。 《Head First 设计模式》&#xff1a; 将抽象和实现放在两…...

pom.xml配置文件失效,显示已忽略的pom.xml --- 解决方案

现象&#xff1a; 在 Maven 创建模块Moudle时,由于开始没有正确创建好&#xff0c;所以把它删掉了&#xff0c;然后接着又创建了与一个与之前被删除的Moudle同名的Moudle时&#xff0c;出现了 Ignore pom.xml&#xff0c;并且新创建的 Module 的 pom.xml配置文件失效&#xf…...

文本编辑器Vim常用操作和技巧

文章目录 1. Vim常用操作1.1 Vim简介1.2 Vim工作模式1.3 插入命令1.4 定位命令1.5 删除命令1.6 复制和剪切命令1.7 替换和取消命令1.8 搜索和搜索替换命令1.9 保存和退出命令 2. Vim使用技巧 1. Vim常用操作 1.1 Vim简介 Vim是一个功能强大的全屏幕文本编辑器&#xff0c;是L…...

【算法系列篇】位运算

文章目录 前言什么是位运算算法1.判断字符是否唯一1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 丢失的数字2.1 题目要求2.2 做题思路2.3 Java代码实现 3. 两数之和3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 只出现一次的数字4.1 题目要求4.2 做题思路4.3 Java代码实现 5.…...

机器学习的测试和验证(Machine Learning 研习之五)

关于 Machine Learning 研习之三、四&#xff0c;可到秋码记录上浏览。 测试和验证 了解模型对新案例的推广效果的唯一方法是在新案例上进行实际尝试。 一种方法是将模型投入生产并监控其性能。 这很有效&#xff0c;但如果你的模型非常糟糕&#xff0c;你的用户会抱怨——这…...

RNN循环神经网络

目录 一、卷积核与循环核 二、循环核 1.循环核引入 2.循环核&#xff1a;循环核按时间步展开。 3.循环计算层&#xff1a;向输出方向生长。 4.TF描述循环计算层 三、TF描述循环计算 四、RNN使用案例 1.数据集准备 2.Sequential中RNN 3.存储模型&#xff0c;acc和lose…...

安防视频监控/视频集中存储/云存储平台EasyCVR无法播放HLS协议该如何解决?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、…...

Docker技术--Docker的安装

1..Docker的安装方式介绍 Docker官方提供了三种方式可以实现Docker环境的安装。分别为:Script、yum、rpm。在实际的环境中建议使用yum或者是rpm。 2..Docker的yum安装 # 1.下载docker wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.re…...

客户案例|MemFire Cloud助推应急管理业务,打造百万级数据可视化大屏

「导语」 硬石科技&#xff0c;成立于2018年&#xff0c;总部位于武汉&#xff0c;是一家专注于应急管理行业和物联感知预警算法模型的技术核心的物联网产品和解决方案提供商。硬石科技作为一家高新技术企业&#xff0c;持有6项发明专利&#xff0c;拥有100余项各类平台认证和资…...

蒲公英路由器如何设置远程打印?

现如今&#xff0c;打印机已经是企业日常办公中必不可少的设备&#xff0c;无论何时何地&#xff0c;总有需要用到打印的地方&#xff0c;包括资料文件、统计报表等等。 但若人在外地或分公司&#xff0c;有文件急需通过总部的打印机进行打印时&#xff0c;由于不在同一物理网络…...

国产自主可控C++工业软件可视化图形架构源码

关于国产自主代替的问题是当前热点&#xff0c;尤其是工业软件领域。 “一个功能强大的全自主C跨平台图形可视化架构对开发自主可控工业基础软件至关重要&#xff01;” 作为全球领先的C工业基础图形可视化软件提供商&#xff0c;UCanCode软件有自己的思考&#xff0c;我们认…...

【linux命令讲解大全】022.网络管理工具和命令概述

文章目录 lsattr命令语法选项参数实例 nmcli补充说明语法选项OPTIONSOBJECT 实例 systemctl补充说明任务 旧指令 新指令 实例 开启防火墙22端口 从零学 python lsattr命令 用于查看文件的第二扩展文件系统属性。 语法 lsattr(选项)(参数) 选项 -E&#xff1a;可显示设备属…...

应急响应流程及思路

应急响应流程及思路 一&#xff1a;前言 对于还没有在项目中真正接触、参与过应急响应的同学来说&#xff0c;“应急响应”这四个字见的最多的就是建筑工地上的横幅 —— 人人懂应急&#xff0c;人人会响应。这里的应急响应和我们网络安全中的应急响应有着某种本质的相似&…...

网页自适应

自适应 那就要最好提前商量好 是全局自适应 或者是 局部自适应 一般网站页面纵向滚动条都是无法避免的 都是做横向适配也就是宽度 那就不能写死宽度像素 局部自适应 一般对父元素设置百分比就行 里面的子元素就设置固定像素、 比如一些登录 全局自适应 也就是要对每个元素…...

什么是Sui Kiosk,它可以做什么,如何赋能创作者?

创作者和IP持有者需要一些工具帮助他们在区块链上实现其商业模式。Sui Kiosk作为Sui上的一种原语可以满足这种需求&#xff0c;为创作者提供动态选项&#xff0c;使他们能够在任何交易场景中设置完成交易的条件。 本文将向您介绍为什么要在SuiFrens中使用Sui Kiosk&#xff0c…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...