当前位置: 首页 > news >正文

sql:SQL优化知识点记录(三)

(1)explain之select_type和table介绍

简单的查询类型是:simple

 

外层 primary,括号里subquery

 用到了临时表:derived

 

(2)explain之type介绍

trpe反映的结果与我们sql是否优化过,是否是最佳状态息息相关

最简单的查询啥都没有改type就是all:表明的的检索是全表扫描

 

const:通过id查询,有索引查询很快  t1查询完之后作为一张临时表d1中只有一条记录,所以在查询就到了system级别

 eq_ref:比如员工表和部门表,员工表的的CEO属于的部门(总裁办)在员工表只出现一次,所以就是eq_ref

但是从部分表搜索总裁办这个唯一的部门需要全表扫描是All

 ref:通过非唯一性索引,可以返回很多行,比如下面通过col1(名字查询),可能返回很多行,所以type就是ref

 range:使用了范围查询,type就是range

 index:安索引查询

all:将全表查询一遍 效率最慢 type为all ,存在全表扫描,建议优化sql

(3)explain之possible_keys和key的介绍

他们两个决定了你是否使用大了索引,也用来判断索引是否失效,和在多个索引竞争的时候mysql最后到底用到了那个索引。

比如:t1表 可能有2个索引l理论上可能用到,但是最终用到的key索引是idx_t1  

 理论上possible_keys没有用到,实际key也没有用到

这里查询显示理论上没有用到索引,但是实际上用到了索引

 (4)explain之key_len介绍

查询的使用使用的索引条件越多key_len越大 

相关文章:

sql:SQL优化知识点记录(三)

(1)explain之select_type和table介绍 简单的查询类型是:simple 外层 primary,括号里subquery 用到了临时表:derived (2)explain之type介绍 trpe反映的结果与我们sql是否优化过,是否…...

List<Map>操作汇总

分组 List<Map> mapList new ArrayList<>(); Map<String,List<Map>> mapListGroup mapList.stream().collect(Collectors.groupingBy(e->e.get("xxx").toString())); 最大值最小值 int max maps.stream().mapToInt(e -> new Inte…...

软考:中级软件设计师:网络类型与拓扑结构,网络规划与设计,ip地址与子网划分,特殊含义的IP地址

软考&#xff1a;中级软件设计师:网络类型与拓扑结构 提示&#xff1a;系列被面试官问的问题&#xff0c;我自己当时不会&#xff0c;所以下来自己复盘一下&#xff0c;认真学习和总结&#xff0c;以应对未来更多的可能性 关于互联网大厂的笔试面试&#xff0c;都是需要细心准…...

linux创建进程

linux创建进程 准备工作 准备工作 在Ubuntu64系统上 1、安装GCC和Make工具 编译器GCC&#xff1a;把C源码转为二进制程序 Make&#xff1a;自动编译多源文件项目 sudo apt-get update #更新存储库 sudo apt-get install build-essential #安装build-essential包 gcc --versio…...

100天精通Golang(基础入门篇)——第19天:深入剖析Go语言中方法(Method)的妙用与实践

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to Golang Language.✨✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1…...

【人工智能】—_不确定性、先验概率_后验概率、概率密度、贝叶斯法则、朴素贝叶斯_、最大似然估计

【人工智能】— 不确定性、先验概率/后验概率、概率密度、贝叶斯法则、朴素贝叶斯 文章目录 【人工智能】— 不确定性、先验概率/后验概率、概率密度、贝叶斯法则、朴素贝叶斯不确定性不确定性与理性决策基本概率符号先验概率(无条件概率)/后验概率(条件概率)随机变量概率密度联…...

postgresql-字符函数

postgresql-字符函数 字符串连接字符与编码字符串长度大小写转换子串查找与替换截断与填充字符串格式化MD5 值字符串拆分字符串反转 字符串连接 concat(str, …)函数用于连接字符串&#xff0c;并且忽略其中的 NULL 参数&#xff1b;concat_ws(sep, str, …) 函数使用指定分隔…...

VUE笔记(五)网络通信

一、axios的简介 1、什么是axios 文档&#xff1a;Axios 中文文档 | Axios 中文网 | Axios 是一个基于 promise 的网络请求库&#xff0c;可以用于浏览器和 node.js 概念&#xff1a;axios是一个基于Promise的网络请求库&#xff0c;可以用于浏览器和node.js 特点&#xff…...

微信小程序修改数据,input不能实时回显

场景&#xff1a; 填写发票抬头&#xff0c;填写抬头公司时候&#xff0c;会根据用户输入的内容实时获取相关的公司信息&#xff0c;用户选择搜索出来的公司&#xff0c;这时候 setData,但是数据并没有回显&#xff0c;而是需要再需要点一下屏幕。 解决方案&#xff1a; 原来…...

GitHub Copilot三连更:能在代码行里直接提问,上下文范围扩展到终端

量子位 | 公众号 QbitAI 就在昨晚&#xff0c;GitHub Copilot迎来了一波不小的更新。 包括&#xff1a; 全新交互体验——代码行中直接召唤聊天功能&#xff0c;不用切界面&#xff0c;主打一个专注&#xff1b; 改善斜杠命令&#xff0c;一键删除&#xff0c;主打快捷操作、…...

双亲委派机制

双亲委派机制流程 当Application ClassLoader 收到一个类加载请求时&#xff0c;他首先不会自己去尝试加载这个类&#xff0c;而是将这个请求委派给父类加载器Extension ClassLoader去完成。 当Extension ClassLoader收到一个类加载请求时&#xff0c;他首先也不会自己去尝试…...

美团北极星榜单,服务零售的医美新样本

事实证明&#xff0c;任何时候&#xff0c;人们对美的追求都是刚需&#xff0c;只是有时候被压抑了。 德勤中国的《中国医美行业2023年度洞悉报告》&#xff08;以下简称“报告”&#xff09;显示&#xff0c;中国医美市场规模预计在2023年超过2000亿元&#xff0c;实现20%增速…...

geant4 常用代码

1 获取特特定能量范围的特定粒子 E:\examples_understanding\geant4-v11.0.0_note\examples\extended\runAndEvent\RE02 //-- Particle with kinetic energy filter.G4SDParticleWithEnergyFilter* pkinEFilter new G4SDParticleWithEnergyFilter(fltName"gammaE filter&…...

重要通知!eBay将升级买家满意度考核,如何让你的店铺脱颖而出?

8月份&#xff0c;eBay发布了重要通知&#xff0c;为促进跨境卖家积极提升买家体验&#xff0c;升级了针对卖家的买家满意度考核。其中&#xff0c;产品质量是买家满意度考核的核心&#xff0c;是中国卖家急需提升的重中之重&#xff0c;也是eBay考核的重点。 eBay将着眼于产品…...

PHP中pack、unpack的用法

pack string pack ( string $format [, mixed $args [, mixed $... ]] ) 该函数用来将对应的参数($args)打包成二进制字符串。 其中第一个参数$format&#xff0c;有如下选项&#xff1a; a 以NUL字节填充字符串空白 A 以SPACE(空格)填充字符串 h 十六进制字符串&…...

KUKA机器人零点标定的具体方法

KUKA机器人零点标定的具体方法 在进行机器人校正时,先将各轴置于一个定义好的机械位置,即所谓的机械零点。这个机械零点位置表明了同轴的驱动角度之间的对应关系,它用一个测量刻槽表示。 为了精确地确定机器人某根轴的机械零点位置,一般应先找到其预校正位置,然后去掉测量…...

基于SpringBoot+Vue的旅游系统

摘 要 随着旅游业的发展&#xff0c;越来越多的人选择旅游作为自己的出行方式。在旅游规划过程中&#xff0c;旅游景点选择是至关重要的环节。本文提出了一种基于协同过滤推荐算法的旅游平台系统。该系统采用前后端分离的设计&#xff0c;主要使用了SpringBoot、Vue等技术&…...

leetcode算法题--复杂链表的复制

原题链接&#xff1a;https://leetcode.cn/problems/fu-za-lian-biao-de-fu-zhi-lcof/description/?envTypestudy-plan-v2&envIdcoding-interviews 感觉一开始想到的办法还是比较笨 /*** Definition for a Node.* type Node struct {* Val int* Next *Node* …...

C++面试题(叁)---操作系统篇

目录 操作系统篇 1 Linux中查看进程运行状态的指令、查看内存使用情况的指令、 tar解压文件的参数。 2 文件权限怎么修改 3 说说常用的Linux命令 4 说说如何以root权限运行某个程序。 5 说说软链接和硬链接的区别。 6 说说静态库和动态库怎么制作及如何使用&#xff0c;区…...

算法笔记:KD树

1 引入原因 K近邻算法需要在整个数据集中搜索和测试数据x最近的k个点&#xff0c;如果一一计算&#xff0c;然后再排序&#xff0c;开销过大 引入KD树的作用就是对KNN搜索和排序的耗时进行改进 2 KD树 2.1 主体思路 以空间换时间&#xff0c;利用训练样本集中的样本点&…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...