pytorch中 nn.Conv2d的简单用法

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,padding_mode='zeros')
参数介绍:
-
in_channels:卷积层输入通道数 -
out_channels:卷积层输出通道数 -
kernel_size:卷积层的卷积核大小 -
padding:填充长度 -
stride:卷积核移动的步长 -
dilation:是否采用空洞卷积 -
groups:是否采用分组卷积 -
bias:是否添加偏置参数 -
padding_mode:padding的模式
如果输入大小为:数量N即批处理大小(batch size),输入通道数C_in,输入高度H_in,输入宽度C_in。输出大小为:数量N,输出通道数C_out,输出高度H_out,输出宽度C_out。
i n p u t : ( N , C i n , H i n , W i n ) o u t p u t : ( N , C o u t , H o u t , W o u t ) input: \quad (N, C_{in},H_{in},W_{in}) \\ output: \quad (N,C_{out}, H_{out}, W_{out}) input:(N,Cin,Hin,Win)output:(N,Cout,Hout,Wout)
之间的转换为:
( N i , C o u t ) = b i a s ( C o u t ) + ∑ k = 0 C i n − 1 w e i g h t ( C o u t , k ) ∗ ( N i , k ) (N_i,C_{out}) = bias(C_{out}) + \sum_{k=0}^{C_{in}-1}weight(C_{out},k) * (N{i},k) (Ni,Cout)=bias(Cout)+k=0∑Cin−1weight(Cout,k)∗(Ni,k)
H o u t = [ H i n + 2 ∗ p a d d i n g [ 0 ] − d i l a t i o n [ 0 ] ∗ ( k e r n a l s i z e [ 0 ] − 1 ) − 1 s t r i d e [ 0 ] + 1 ] H_{out} = [ \frac {H_{in} + 2 * padding[0] - dilation[0] *(kernal_size[0] - 1) - 1}{stride[0]} + 1] Hout=[stride[0]Hin+2∗padding[0]−dilation[0]∗(kernalsize[0]−1)−1+1]
W o u t = [ W i n + 2 ∗ p a d d i n g [ 1 ] − d i l a t i o n [ 1 ] ∗ ( k e r n e l s i z e [ 1 ] − 1 ) − 1 s t r i d e [ 1 ] + 1 ] W_{out} = [ \frac {W_{in} + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1} {stride[1]} + 1] Wout=[stride[1]Win+2∗padding[1]−dilation[1]∗(kernelsize[1]−1)−1+1]
对于二维简化的:
W i n , H i n 输入的宽、高 W o u t , H o u t 输出的宽,高 F 卷积核的大小 S 步长 P 边界填充 W_{in},H_{in} \quad 输入的宽、高 \\ W_{out},H_{out} \quad 输出的宽,高 \\ F \quad 卷积核的大小 \\ S \quad 步长 \\ P \quad 边界填充 Win,Hin输入的宽、高Wout,Hout输出的宽,高F卷积核的大小S步长P边界填充
那么输出的宽、高为:
W o u t = W i n − F W + 2 P S + 1 H o u t = H i n − F H + 2 P S + 1 W_{out} = \frac {W_{in} - F_{W} + 2P} S + 1 \\ H_{out} = \frac {H_{in} - F_{H} + 2P} S + 1 Wout=SWin−FW+2P+1Hout=SHin−FH+2P+1
在pytorch中的使用
- 直接使用(不常见)
import torch
import torch.nn as nn
# https://www.bilibili.com/video/BV1644y1h7LN/?spm_id_from=333.337.search-card.all.click&vd_source=13dfbe5ed2deada83969fafa995ccff6# 输入通道数
in_channels = 1
# 输出通道数
out_channels = 1
# 批处理大小
batch_size = 1
# 卷积核大小 (3,3)
kernel_size = 3
# 输入规格
input_size = [batch_size, in_channels, 4, 4]# nn.Conv2d使用,其他默认值
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size)
# 随机输入特征图
input_feature_map = torch.randn(input_size)
# 打印输入特征图形状
print(input_feature_map.shape)
# 求出输出特征图
output_feature_map = conv_layer(input_feature_map)
# 打印出卷积核的规格
print(conv_layer.weight.shape)
# weight == out_channel * in_channel * height * weight
# 打印输出特征图大小
print(output_feature_map.shape)
输出:
torch.Size([1, 1, 4, 4])
torch.Size([1, 1, 3, 3])
torch.Size([1, 1, 2, 2])
- 封装为类的形式
import torch
from torch import nn# 定义一个同样操作的卷积类
class Foo(nn.Module):def __init__(self, in_channel, out_channel):super(Foo,self).__init__()self.layer = nn.Sequential(nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3))def forward(self, x):return self.layer(x)# 实例化一个
conv2 = Foo(1,1)
# 输出特征图, input_feature_map_2 和 input_feature_map是相同的值
output_feature_map_2 = conv2(input_feature_map_2)
print(output_feature_map_2)
输出:
tensor([[[[ 0.5144, 0.0672],[ 0.2169, -0.0591]]]], grad_fn=<ConvolutionBackward0>)
可以观察到,这两个操作相同但是结果值却不相同。这是因为虽然两者实现了相同的卷积操作,但由于它们的初始化和权重值的不同,因此输出结果可能不完全一致。 另外,对于卷积操作的结果,输出的张量形状可能会有所不同,但数值内容应该是相似的。如果希望确保两种方式得到的输出结果完全一致,可以尝试使用相同的初始化参数,并确保权重值相同。
相关文章:
pytorch中 nn.Conv2d的简单用法
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, biasTrue,padding_modezeros)参数介绍: in_channels:卷积层输入通道数 out_channels:卷积层输出通道数 kernel_size:卷积层的…...
前端项目工程化之代码规范
目录 一、前言二、ESLint三、Prettier四、项目实战4.1 环境依赖版本4.2 使用pnpm4.3 git提交规范 五、资源 收集六、源码地址 一、前言 前端项目工程化之代码规范是指在前端项目中定义一套代码规范,以确保项目中的代码风格和格式一致,提高代码的可读性和…...
MyBaits Generator
参考文档 MyBatis Generator Core – Introduction to MyBatis Generator MyBatis Generator 详解_enablesubpackages_isea533的博客-CSDN博客 一文解析 MyBatis Generator 的使用及配置 - 掘金 1. Introduction MyBatis Generator (MBG) 是 MyBatis MyBatis的代码生成器。…...
JavaWeb 速通Ajax
目录 一、Ajax快速入门 1.基本介绍 : 2.使用原理 : 二、Ajax经典入门案例 1.需求 : 2.前端页面实现 : 3. 处理HTTP请求的servlet实现 4.引入jar包及druid配置文件、工具类 : 5.Domain层实现 : 6.DAO层实现 : 7.Service层实现 : 8.运行测试 : 三、JQuery操作Ajax 1 …...
vscode c++编译时报错
文章目录 1. 报错内容:GDB Failed with message;2. 报错内容:Unable to start debugging. 1. 报错内容:GDB Failed with message; 例如上图报错,一般就是编译器选择错误,有两种方法解决: 打开 tasks.json …...
基于体系结构架构设计-架构真题(十五)
基于体系结构开发设计(Architecture-Base Software Design)ABSD,是指构成体系结构的()组合驱动,ABSC方法是一个自项向下、递归细化的方法,软件系统的体系结构通过该方法细化,直到能产…...
IPv6网络实验:地址自动生成与全球单播通信探索
文章目录 一、实验背景与目的二、实验拓扑三、实验需求四、实验解法1. 在R1和PC3上开启IPv6链路本地地址自动生成,测试是否能够使用链路本地地址互通2. 为R1配置全球单播地址2001::1/64,使PC3能够自动生成与R1同一网段的IPv6地址3. 测试R1和PC3是否能够使…...
深入探索前端之道:JavaScript深拷贝与浅拷贝的解析与实现
引言 前端开发中,数据的复制是一个常见的操作。尤其是在处理对象和数组时,我们需要考虑的是一个浅拷贝还是深拷贝。那么,什么是深拷贝和浅拷贝?它们在前端开发中有什么作用?如何实现这两种拷贝?这是我们在…...
关于两个不同数据库的两张表建立数据库链接,关联查询数据
一、数据库链接 数据库链接(database link)是用于跨不同数据库之间进行连接和数据传输的工具或方法。它允许在一个数据库中访问另一个数据库中的对象和数据。 二、具体操作 以Oracle数据库为例 --1.建立链接tjpt CREATE DATABASE LINK tjpt CONNECT…...
Google登录SDK
一、接入的准备工作 官方文档链接地址:开始使用一键登录和注册 按照步骤进行接入即可 二、项目参考(Unity项目) 注意:代码版本如果不适用新的Google API 请自行参考最新版本接口 SDKGoogleSignInActivity 主要用于登录的代码。Un…...
ASP.NET Core 8 的运行环境 Environment
开发流程一般有3个阶段: 开发 Development测试 Stage正式 Production 运行时环境变量可以用于根据不同的开发阶段运行不同的逻辑,比如在开发阶段的某些功能或保密信息不暴露在正式上线的代码中。 在Visual Stduio创建的模板代码中是否为开发环境Envir…...
机械臂手眼标定ZED相机——眼在手外python、matlab
目录 1.眼在手外原理 2.附上眼在手外求得手眼矩阵的python代码 3.眼在手外标定步骤 1)打印棋盘格 2)得到hand数据 3)得到camera数据 4.运行python得到手眼矩阵 1.眼在手外原理 眼在手外所求的手眼矩阵是基坐标到相机的转换矩阵 2.附上…...
前端实现动态路由(前端控制全部路由,后端返回用户角色)
优缺点 优点: 不用后端帮助,路由表维护在前端逻辑相对比较简单,比较容易上手权限少的系统用前端鉴权更加方便 缺点: 线上版本每次修改权限页面,都需要重新打包项目大型项目不适用如果需要在页面中增加角色并且控制可以访问的页…...
Spring5学习笔记—Spring事务处理
✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: Spring专栏 ✨特色专栏: M…...
如何增长LLM推理token,从直觉到数学
背景: 最近大模型输入上文长度增长技术点的研究很火。为何要增长token长度,为何大家如此热衷于增长输入token的长度呢?其实你如果是大模型比价频繁的使用者,这个问题应该不难回答。增长了输入token的长度,那需要多次出入才能得到…...
《穷爸爸与富爸爸》时间是最宝贵的资产,只有它对所有人都是公平的
《穷爸爸与富爸爸》时间是最宝贵的资产,只有它对所有人都是公平的 罗伯特清崎,日裔美国人,投资家、教育家、企业家。 萧明 译 文章目录 《穷爸爸与富爸爸》时间是最宝贵的资产,只有它对所有人都是公平的[toc]摘录各阶层现金流图支…...
Git结合Gitee的企业开发模拟
本系列有两篇文章: 一是另外一篇《快速使用Git完整开发》,主要说明了关于Git工具的基础使用,包含三板斧(git add、git commit、git push)、Git基本配置、版本回退、分支管理、公钥与私钥、远端仓库和远端分支、忽略文…...
WEBGL(2):绘制单个点
代码如下: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevi…...
C# task多线程创建,暂停,继续,结束使用
1、多线程任务创建 private void button1_Click(object sender, EventArgs e) //创建线程{CancellationToken cancellationToken tokensource.Token;Task.Run(() > //模拟耗时任务{for (int i 0; i < 100; i){if (cancellationToken.IsCancellationRequested){return;…...
界面控件DevExpress WinForms(v23.2)下半年发展路线图
本文主要概述了官方在下半年(v23.2)中一些与DevExpress WinForms相关的开发计划,重点关注的领域将是可访问性支持和支持.NET 8。 DevExpress WinForms有180组件和UI库,能为Windows Forms平台创建具有影响力的业务解决方案。同时能…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙
WebGL:在浏览器中解锁3D世界的魔法钥匙 引言:网页的边界正在消失 在数字化浪潮的推动下,网页早已不再是静态信息的展示窗口。如今,我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室,甚至沉浸式的V…...
C# WPF 左右布局实现学习笔记(1)
开发流程视频: https://www.youtube.com/watch?vCkHyDYeImjY&ab_channelC%23DesignPro Git源码: GitHub - CSharpDesignPro/Page-Navigation-using-MVVM: WPF - Page Navigation using MVVM 1. 新建工程 新建WPF应用(.NET Framework) 2.…...
虚拟机网络不通的问题(这里以win10的问题为主,模式NAT)
当我们网关配置好了,DNS也配置好了,最后在虚拟机里还是无法访问百度的网址。 第一种情况: 我们先考虑一下,网关的IP是否和虚拟机编辑器里的IP一样不,如果不一样需要更改一下,因为我们访问百度需要从物理机…...
[C++错误经验]case语句跳过变量初始化
标题:[C错误经验]case语句跳过变量初始化 水墨不写bug 文章目录 一、错误信息复现二、错误分析三、解决方法 一、错误信息复现 write.cc:80:14: error: jump to case label80 | case 2:| ^ write.cc:76:20: note: crosses initialization…...
