学习 使用pandas库 DataFrame 使用

1 、 数据排序 sort_values()函数
by:要排序的名称或名称列表,
sorted_df = df.sort_values(by='Age',ascending=False) 由大到小排序;
sorted_df = df.sort_values(by='Age') 由小到大排序;
# 创建一个示例数据帧
data = {'Name': ['Tom', 'Nick', 'John', 'Amy'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)# 按照Age列进行排序
sorted_df = df.sort_values(by='Age')
sorted_df.to_csv('test1.csv')
print(sorted_df)

2 把字典,列表,迭代器 数据写入csv文件,to_csv() 函数
方式1:
lis_offer, lis_revenue = self.get_offer_revenue()data = {'offerid': lis_offer,'revenue': lis_revenue}result = pd.DataFrame(data)result.to_csv(data_path + start_time + "offer_revenue.csv")
方式2:
lis_offer, lis_revenue = self.get_offer_revenue()x_offer = np.array(lis_offer).reshape(-1, 1)x_revenue = np.array(lis_revenue).reshape(-1, 1)result = np.concatenate((x_offer, x_revenue), axis=1)result = pd.DataFrame(result, columns=['offerid', 'revenue'])result.to_csv(data_path + start_time + "offer_revenue.csv")
def read4(self):active_score_lit = []li = ['90-100.tsv']for i in li:with open(i, mode='r+', encoding='utf-8') as file:for i in file.readlines():aa = json.loads(i)active_score_lit.append(aa)data = pd.DataFrame(active_score_lit)
access_cat ... conv_score
0 {"IAB9-5":7.32514399521715,"IAB9-30":7.3255896... ... NaN
1 {"IAB9-30":1.2948738821508443,"IAB1":1.2948738... ... NaN
2 {"IAB9-5":6.751567110240471,"IAB9-30":7.859169... ... NaN
3 NaN ... 2013.6735
4 {"IAB1":17.93415291298408,"IAB5":3.91909391671... ... NaN
方式3:
class GetOfferid():def get_numpage(self):'''通过请求 task任务接口 num::return:输出 迭代器:offerid, strategy, country, sendSuccessCount, deviceCount'''for page in range(1, 15+1):url1 = host + "api/admin/v3/task/page?pageNum="+str(page)+"&pageSize=10"res = (requests.get(url=url1, headers=header, verify=False).json())['result']['records']time.sleep(1)for result in res:yield result['offerId'],result['strategy'],result['country'],result['sendSuccessCount'],result['deviceCount']def write_csv(self):lis_deviceCount = self.get_numpage()# 迭代器 generator for i in lis_deviceCount: 遍历结果: ('9702', 'vba', 'IN', 155917, 48412574)result = pd.DataFrame(lis_deviceCount, columns=['offerid', 'strategy', 'country', 'sendSuccessCount', 'deviceCount'])result.to_csv(filename)
方式3: 已存在表格中写入一列数据:
df = pd.read_csv(filename)df['expect_cvr'] = self.get_expect_cvr()df.to_csv(filename, index=False, encoding="utf_8_sig")

方式4: 已存在表格中写入几行数据:
原数据:

追加写入 result.to_csv(filename, mode='a'), 加上mode='a',便可以追加写入数据;

追加写入 header=False, 不写出列名;
result.to_csv(filename, mode='a', header=False)

3 查询 内容
3-0 查询单行数据【索引】,遍历所有行的数据
# 创建一个示例数据帧
data = {'Name': ['Tom', 'Nick', 'John', 'Nick'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)
print(df)
print("``````````````````````")
print(df[2:3])
print("``````````````````````")
for rr in df.values:print(rr)Name Age City
0 Tom 25 New York
1 Nick 29 Paris
2 John 35 London
3 Nick 21 Berlin
``````````````````````Name Age City
2 John 35 London
``````````````````````
['Tom' 25 'New York']
['Nick' 29 'Paris']
['John' 35 'London']
['Nick' 21 'Berlin']
3-1根据内容查询出对应的索引: np.flatnonzero(df['Name'] == 'Nick')
data = {'Name': ['Tom', 'Nick', 'John', 'Nick'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)
print(df)
print("``````````````````````")
d = np.flatnonzero(df['Name'] == 'Nick')
print(d)Name Age City
0 Tom 25 New York
1 Nick 29 Paris
2 John 35 London
3 Nick 21 Berlin
``````````````````````
[1 3]
3-2根据内容查询出对应的行的内容: df.loc[df['Name'] == 'Nick']
data = {'Name': ['Tom', 'Nick', 'John', 'Nick'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)
print(df)
print("``````````````````````")
f = df.loc[df['Name'] == 'Nick']
print(f)Name Age City
0 Tom 25 New York
1 Nick 29 Paris
2 John 35 London
3 Nick 21 Berlin
``````````````````````Name Age City
1 Nick 29 Paris
3 Nick 21 Berlin
DataFrame 增删改
2.3.1 行的操作
1.1 添加行
pd._append(new_series, ignore_index =True) ignore_index =True忽略标签意识
返回一个新的DataFrame
lis_dic2 = {'offerId':[12078,18379,1817],'click':[1663,18492024,6379911],
}pd2 = pd.DataFrame(lis_dic2)
new_series = pd.Series([999,1000],index=['offerId','click'])
pd3 = pd2._append(new_series, ignore_index =True)
1.2 修改行
pd.loc[行标签] = [列标签内容,列标签内容] x 表示要修改的行标签,填写所有内容不用添加标签
pd.locx[行位置] = [列位置内容,列位置内容,] x 表示要修改的行标签,填写所有内容不用添加标签
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}pd2 = pd.DataFrame(lis_dic2)
pd2.loc[2] = [1819,181918]
1.3 删除行
pd.drop([x]), X表示要删除的行号,可以是多行,删除返回一个新的DataFrame
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd3 = pd2.drop([2])
2.3.2 列的操作
1.1 新增/修改 列
方式1: df['列标签'] = 新列
方式2: pd.loc[:,'列标签'] =新列
如果DataFrame 不存在这一列,则新增一列; 如果DataFrame存在这一列则修改值;
new_result = DataFrame(result,columns=['sourceManager','sex','tel']) # 新增一个列
new_result['tel'] = ['15829041959','15829041969','15829041979','15829041989'] 新增这一列赋值;
1.2 删除列
pd.drop([x],axis=1), X表示要删除的列,删除返回一个新的DataFrame
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd2.loc[:,'sourceManager'] = ['ber','amie','terch','lisi']
pd3 = pd2.drop(['click'],axis=1)
DataFrame 数据查询
2.4.1 df.nlargest(n,columns) 按照columns 指定的列进行降序排序,并取前N行数据;
2.4.2 df.nsmallest(n,columns) 按照columns 指定的列进行升序排序,并取前N行数据;
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd3 = pd2.nsmallest(2,'click')
2.4.3 按条件查询:
方式1: pd3 =pd2.loc[ 查询条件 ]
方式2: pd2.query(查询条件)
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd3 =pd2.loc[(pd2['click'] >1500)& (pd2['click'] < 6379912)]
pd4 = pd2.query('click > 1500 & click< 6379912')
2.4.4 分组聚合
方式1:pd2.groupby(列标签,···). 列标签 . 聚合函数()
按指定列分组,并对分组数据的相应列进行相应的聚合操作;
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
# 安装sex 字段分组, 求 ‘click’字段平均值
pd4 = pd2.groupby('sex').click.mean()
方式2:pd2.groupby(列标签,···).agg({'列标签':'聚合函数()',······})
按指定列分组,并对分组数据的相应列进行相应的聚合操作
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
# # 安装sex 字段分组, 求 'offerId'的个数 和 ‘click’字段平均值
pd3 = pd2.groupby('sex').agg({'offerId':'count','click':'mean'})
2.5 排序
2.5.1 将DataFrame 按照指定列的数据进行排序;ascending=False,降序,True,升序;
pd2.sort_values(by='列标签',ascending=False)
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
# 排序
pd3 = pd2.sort_values('click',ascending=False)
2.5.2 将DataFrame 按照行标签进行排序;ascending=False,降序,True,升序;
pd2.sort_index(ascending=True)
lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
# 排序
pd4 = pd2.sort_index(ascending=True)
相关文章:
学习 使用pandas库 DataFrame 使用
1 、 数据排序 sort_values()函数 by:要排序的名称或名称列表, sorted_df df.sort_values(byAge,ascendingFalse) 由大到小排序; sorted_df df.sort_values(byAge) 由小到大排序; # 创建一个示例数据帧 data {Name: [Tom, Nick, John…...
C++字符串详解
C 大大增强了对字符串的支持,除了可以使用C风格的字符串,还可以使用内置的 string 类。string 类处理起字符串来会方便很多,完全可以代替C语言中的字符数组或字符串指针。 string 是 C 中常用的一个类,它非常重要,我们…...
vant2 van-calendar组件增加清除按钮和确定按钮
利用自定义插槽增加一个清除按钮 <van-calendar ref"fTime1" select"selectTimePicker" confirm"changeTimePicker" :default-date"null" :show-confirm"false" v-model"timePickerShow" type"range&quo…...
Spring redis使用报错Read timed out排查解决
文章目录 使用场景报错信息解决方式 使用场景 我们使用redis作为缓存服务,缓存一些业务数据,如路口点位信息、渠化信息、设备信息等有一些需要实时计算的数据,缓存在redis里,如实时信号周期相位、周期内过车数量等有需要不同服务…...
C语言每日一练-------Day(9)
本专栏为c语言练习专栏,适合刚刚学完c语言的初学者。本专栏每天会不定时更新,通过每天练习,进一步对c语言的重难点知识进行更深入的学习。 今日练习题关键字:字符个数统计 多数元素 投票法 💓博主csdn个人主页…...
SpringCloud(十)——ElasticSearch简单了解(三)数据聚合和自动补全
文章目录 1. 数据聚合1.1 聚合介绍1.2 Bucket 聚合1.3 Metrics 聚合1.4 使用 RestClient 进行聚合 2. 自动补全2.1 安装补全包2.2 自定义分词器2.3 自动补全查询2.4 拼音自动补全查询2.5 RestClient 实现自动补全2.5.1 建立索引2.5.2 修改数据定义2.5.3 补全查询2.5.4 解析结果…...
二叉查找树(binary search tree)(难度7)
C数据结构与算法实现(目录) 答案在此:二叉查找树(binary search tree)(答案) 写在前面 部分内容参《算法导论》 基本接口实现 1 删除 删除值为value的第一个节点 删除叶子节点1 删除叶子节…...
windows环境装MailHog
背景:win10系统,windows 宝塔,laravel 项目,邮件相关需要装一个MailHog 下载地址:https://sourceforge.net/projects/mailhog.mirror/ 直接下载,下载后双击运行就可以了,系统可能提示”不信任“…...
Ubuntu 22.04.2 LTS 安装python3.6后报错No module named ‘ufw‘
查明原因: vim /usr/sbin/ufw 初步判断是python版本的问题。 # 查看python3软链接 ll /usr/bin/python3 将python3的软链接从python3.6换成之前的3.10,根据自己电脑情况。 可以查看下 /usr/bin 下有什么 我这是python3.10 所以解决办法是 # 移除py…...
Flutter小功能实现-咖啡店
1 导航栏实现 效果图: 1.Package google_nav_bar: ^5.0.6 使用文档: google_nav_bar | Flutter Package 2.Code //MyBottomNavBar class MyBottomNavBar extends StatelessWidget {void Function(int)? onTabChange;MyBottomNavBar({super.key, …...
JavaSE 集合框架及背后的数据结构
目录 1 介绍2 学习的意义2.1 Java 集合框架的优点及作用2.2 笔试及面试题 3 接口 interfaces3.1 基本关系说明3.2 Collection 常用方法说明3.3 Collection 示例3.4 Map 常用方法说明3.5 Map 示例 4 实现 classes5 Java数据结构知识体系5.1 目标5.2 知识点 1 介绍 集合…...
-9501 MAL系统没有配置或者服务器不是企业版(dm8达梦数据库)
dm8达梦数据库 -9501 MAL系统没有配置或者服务器不是企业版) 环境介绍1 环境检查2 问题原因 环境介绍 搭建主备集群时,遇到报错-9501 MAL系统没有配置或者服务器不是企业版 1 环境检查 检查dmmal.ini配置文件权限正确 dmdba:dinstall,内容正…...
云备份——第三方库简单介绍并使用(上)
目录 一,Jsoncpp库序列化和反序列化 二,bundle文件压缩库 2.1 文件压缩 2.2 文件解压 一,Jsoncpp库序列化和反序列化 首先我们需要先了解一下json是什么,json是一种数据交换格式,采用完全独立于编程语言的文本格式来…...
MySQL数据库之索引
目录 一、索引的概念 二、索引的作用 三、索引的副作用 四、创建索引的规则 1、适合创建为索引的字段的规则 2、MySQL的优化 哪些字段/场景适合创建索引,哪些不适合 五、索引的分类和创建 1、索引的分类 2、三种创建方式 3、索引的创建演示 1、创建普通索…...
OpenCV(四):Mat支持的运算
目录 1.对两个 Mat 对象按元素进行运算,有加法、减法、乘法和除法等运算。 2.Mat类支持逻辑与、或、非等逻辑运算, 1.对两个 Mat 对象按元素进行运算,有加法、减法、乘法和除法等运算。 加法:Mat Mat,保存到 resul…...
WebRTC音视频通话-WebRTC推拉流过程中日志log输出
WebRTC音视频通话-WebRTC推拉流过程中日志log输出 之前实现iOS端调用ossrs服务实现推拉流流程。 推流:https://blog.csdn.net/gloryFlow/article/details/132262724 拉流:https://blog.csdn.net/gloryFlow/article/details/132417602 在推拉流过程中的…...
用Jmeter压测问题解决
最近做一个基于duboo服务的接口,需要进行稳定性测试。但是用Jmeter GUI 方式跑只能持续2个小时左右,Jmeter就崩溃了,日志报错:out of memory 解决方法如下: 直接运行jmeter的java包试试: 1、打开jmeter.…...
C语言:字符函数和字符串函数(一篇拿捏字符串函数!)
目录 求字符串长度: 1. strlen(字符串长度) 长度不受限制函数: 2. strcpy(字符串拷贝) 3. strcat(字符串追加) 4. strcmp(字符串比较) 长度受限制函数: 5. strncpy(字符串拷贝) 6. strncat(字符串追加) 7. strncmp(字符串比较) 字…...
问道管理:成交量买卖公式?
跟着股票商场的如火如荼,人们对于怎么解读和使用成交量进行股票生意的需求日积月累。成交量是指在某一特定时间内进行的股票生意的数量,它是投资者们研判商场状况和制定生意战略的重要指标之一。那么,是否存在一种最厉害的成交量生意公式呢&a…...
【MySQL】5、MySQL高阶语句
一、常用查询(增、删、改、查) 对 MySQL 数据库的查询,除了基本的查询外,有时候需要对查询的结果集进行处理。 例如只取 10 条数据、对查询结果进行排序或分组等等 模板表: 数据库有一张info表,记录了学生…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
