当前位置: 首页 > news >正文

学习 使用pandas库 DataFrame 使用

1 、 数据排序  sort_values()函数

     by:要排序的名称或名称列表, 

     sorted_df = df.sort_values(by='Age',ascending=False)  由大到小排序;

     sorted_df = df.sort_values(by='Age')  由小到大排序;

# 创建一个示例数据帧
data = {'Name': ['Tom', 'Nick', 'John', 'Amy'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)# 按照Age列进行排序
sorted_df = df.sort_values(by='Age')
sorted_df.to_csv('test1.csv')
print(sorted_df)

2 把字典,列表,迭代器 数据写入csv文件,to_csv() 函数

   方式1:

        lis_offer, lis_revenue = self.get_offer_revenue()data = {'offerid': lis_offer,'revenue': lis_revenue}result = pd.DataFrame(data)result.to_csv(data_path + start_time + "offer_revenue.csv")

  方式2:

        lis_offer, lis_revenue = self.get_offer_revenue()x_offer = np.array(lis_offer).reshape(-1, 1)x_revenue = np.array(lis_revenue).reshape(-1, 1)result = np.concatenate((x_offer, x_revenue), axis=1)result = pd.DataFrame(result, columns=['offerid', 'revenue'])result.to_csv(data_path + start_time + "offer_revenue.csv")
    def read4(self):active_score_lit = []li = ['90-100.tsv']for i in li:with open(i, mode='r+', encoding='utf-8') as file:for i in file.readlines():aa = json.loads(i)active_score_lit.append(aa)data = pd.DataFrame(active_score_lit)

                                             access_cat  ... conv_score
0      {"IAB9-5":7.32514399521715,"IAB9-30":7.3255896...  ...        NaN
1      {"IAB9-30":1.2948738821508443,"IAB1":1.2948738...  ...        NaN
2      {"IAB9-5":6.751567110240471,"IAB9-30":7.859169...  ...        NaN
3                                                    NaN  ...  2013.6735
4      {"IAB1":17.93415291298408,"IAB5":3.91909391671...  ...        NaN

方式3:

    

class GetOfferid():def get_numpage(self):'''通过请求 task任务接口 num::return:输出  迭代器:offerid, strategy, country, sendSuccessCount, deviceCount'''for page in range(1, 15+1):url1 = host + "api/admin/v3/task/page?pageNum="+str(page)+"&pageSize=10"res = (requests.get(url=url1, headers=header, verify=False).json())['result']['records']time.sleep(1)for result in res:yield result['offerId'],result['strategy'],result['country'],result['sendSuccessCount'],result['deviceCount']def write_csv(self):lis_deviceCount = self.get_numpage()#  迭代器    generator     for i in lis_deviceCount:    遍历结果: ('9702', 'vba', 'IN', 155917, 48412574)result = pd.DataFrame(lis_deviceCount, columns=['offerid', 'strategy', 'country', 'sendSuccessCount', 'deviceCount'])result.to_csv(filename)

方式3:  已存在表格中写入一列数据:

  

        df = pd.read_csv(filename)df['expect_cvr'] = self.get_expect_cvr()df.to_csv(filename, index=False, encoding="utf_8_sig")

方式4:  已存在表格中写入几行数据:

               原数据:

              

               追加写入   result.to_csv(filename, mode='a'),      加上mode='a',便可以追加写入数据;

              

              追加写入  header=False,  不写出列名;

               result.to_csv(filename, mode='a', header=False)

3  查询 内容

   3-0 查询单行数据【索引】,遍历所有行的数据

     

# 创建一个示例数据帧
data = {'Name': ['Tom', 'Nick', 'John', 'Nick'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)
print(df)
print("``````````````````````")
print(df[2:3])
print("``````````````````````")
for rr in df.values:print(rr)Name  Age      City
0   Tom   25  New York
1  Nick   29     Paris
2  John   35    London
3  Nick   21    Berlin
``````````````````````Name  Age    City
2  John   35  London
``````````````````````
['Tom' 25 'New York']
['Nick' 29 'Paris']
['John' 35 'London']
['Nick' 21 'Berlin']

   3-1根据内容查询出对应的索引:  np.flatnonzero(df['Name'] == 'Nick')

data = {'Name': ['Tom', 'Nick', 'John', 'Nick'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)
print(df)
print("``````````````````````")
d = np.flatnonzero(df['Name'] == 'Nick')
print(d)Name  Age      City
0   Tom   25  New York
1  Nick   29     Paris
2  John   35    London
3  Nick   21    Berlin
``````````````````````
[1 3]

   3-2根据内容查询出对应的行的内容:  df.loc[df['Name'] == 'Nick']

data = {'Name': ['Tom', 'Nick', 'John', 'Nick'],'Age': [25, 29, 35, 21],'City': ['New York', 'Paris', 'London', 'Berlin']}
df = pd.DataFrame(data)
print(df)
print("``````````````````````")
f = df.loc[df['Name'] == 'Nick']
print(f)Name  Age      City
0   Tom   25  New York
1  Nick   29     Paris
2  John   35    London
3  Nick   21    Berlin
``````````````````````Name  Age    City
1  Nick   29   Paris
3  Nick   21  Berlin

DataFrame   增删改

2.3.1  行的操作

    1.1  添加行 

          pd._append(new_series, ignore_index =True)             ignore_index =True忽略标签意识

          返回一个新的DataFrame

lis_dic2 = {'offerId':[12078,18379,1817],'click':[1663,18492024,6379911],
}pd2 = pd.DataFrame(lis_dic2)
new_series = pd.Series([999,1000],index=['offerId','click'])
pd3 = pd2._append(new_series, ignore_index =True)

    1.2  修改行

         pd.loc[行标签] = [列标签内容,列标签内容]     x 表示要修改的行标签,填写所有内容不用添加标签

        pd.locx[行位置] = [列位置内容,列位置内容,]    x 表示要修改的行标签,填写所有内容不用添加标签

        

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}pd2 = pd.DataFrame(lis_dic2)
pd2.loc[2] = [1819,181918]

    1.3  删除行

       pd.drop([x]),   X表示要删除的行号,可以是多行,删除返回一个新的DataFrame

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd3 = pd2.drop([2])

2.3.2  列的操作

     1.1  新增/修改 列

          方式1: df['列标签'] = 新列

          方式2:  pd.loc[:,'列标签'] =新列   

         如果DataFrame 不存在这一列,则新增一列; 如果DataFrame存在这一列则修改值;

new_result = DataFrame(result,columns=['sourceManager','sex','tel'])   #  新增一个列
new_result['tel'] = ['15829041959','15829041969','15829041979','15829041989']   新增这一列赋值;

    1.2  删除列

           pd.drop([x],axis=1),     X表示要删除的列,删除返回一个新的DataFrame

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd2.loc[:,'sourceManager'] = ['ber','amie','terch','lisi']
pd3 = pd2.drop(['click'],axis=1)

DataFrame   数据查询

2.4.1         df.nlargest(n,columns)          按照columns 指定的列进行降序排序,并取前N行数据;

2.4.2         df.nsmallest(n,columns)       按照columns 指定的列进行升序排序,并取前N行数据;

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd3 = pd2.nsmallest(2,'click')

2.4.3   按条件查询:

          方式1: pd3 =pd2.loc[ 查询条件 ]

          方式2: pd2.query(查询条件)

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],
}
pd2 = pd.DataFrame(lis_dic2)
pd3 =pd2.loc[(pd2['click'] >1500)& (pd2['click'] < 6379912)]
pd4 = pd2.query('click > 1500 & click< 6379912')

2.4.4   分组聚合

     方式1:pd2.groupby(列标签,···). 列标签 . 聚合函数()

    按指定列分组,并对分组数据的相应列进行相应的聚合操作;

     

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
#  安装sex 字段分组, 求 ‘click’字段平均值
pd4 = pd2.groupby('sex').click.mean()

     方式2:pd2.groupby(列标签,···).agg({'列标签':'聚合函数()',······})

     按指定列分组,并对分组数据的相应列进行相应的聚合操作

   

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
# #  安装sex 字段分组, 求 'offerId'的个数 和 ‘click’字段平均值
pd3 = pd2.groupby('sex').agg({'offerId':'count','click':'mean'})

2.5 排序

2.5.1   将DataFrame 按照指定列的数据进行排序;ascending=False,降序,True,升序;

            pd2.sort_values(by='列标签',ascending=False)

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
# 排序
pd3 = pd2.sort_values('click',ascending=False)

2.5.2  将DataFrame 按照行标签进行排序;ascending=False,降序,True,升序;

           pd2.sort_index(ascending=True)

lis_dic2 = {'offerId':[12078,18379,1817,999],'click':[1663,18492024,6379911,1000],'sex':['A','B','A','B']
}
pd2 = pd.DataFrame(lis_dic2)
# 排序
pd4 = pd2.sort_index(ascending=True)

相关文章:

学习 使用pandas库 DataFrame 使用

1 、 数据排序 sort_values()函数 by:要排序的名称或名称列表&#xff0c; sorted_df df.sort_values(byAge,ascendingFalse) 由大到小排序&#xff1b; sorted_df df.sort_values(byAge) 由小到大排序&#xff1b; # 创建一个示例数据帧 data {Name: [Tom, Nick, John…...

C++字符串详解

C 大大增强了对字符串的支持&#xff0c;除了可以使用C风格的字符串&#xff0c;还可以使用内置的 string 类。string 类处理起字符串来会方便很多&#xff0c;完全可以代替C语言中的字符数组或字符串指针。 string 是 C 中常用的一个类&#xff0c;它非常重要&#xff0c;我们…...

vant2 van-calendar组件增加清除按钮和确定按钮

利用自定义插槽增加一个清除按钮 <van-calendar ref"fTime1" select"selectTimePicker" confirm"changeTimePicker" :default-date"null" :show-confirm"false" v-model"timePickerShow" type"range&quo…...

Spring redis使用报错Read timed out排查解决

文章目录 使用场景报错信息解决方式 使用场景 我们使用redis作为缓存服务&#xff0c;缓存一些业务数据&#xff0c;如路口点位信息、渠化信息、设备信息等有一些需要实时计算的数据&#xff0c;缓存在redis里&#xff0c;如实时信号周期相位、周期内过车数量等有需要不同服务…...

C语言每日一练-------Day(9)

本专栏为c语言练习专栏&#xff0c;适合刚刚学完c语言的初学者。本专栏每天会不定时更新&#xff0c;通过每天练习&#xff0c;进一步对c语言的重难点知识进行更深入的学习。 今日练习题关键字&#xff1a;字符个数统计 多数元素 投票法 &#x1f493;博主csdn个人主页&#xf…...

SpringCloud(十)——ElasticSearch简单了解(三)数据聚合和自动补全

文章目录 1. 数据聚合1.1 聚合介绍1.2 Bucket 聚合1.3 Metrics 聚合1.4 使用 RestClient 进行聚合 2. 自动补全2.1 安装补全包2.2 自定义分词器2.3 自动补全查询2.4 拼音自动补全查询2.5 RestClient 实现自动补全2.5.1 建立索引2.5.2 修改数据定义2.5.3 补全查询2.5.4 解析结果…...

二叉查找树(binary search tree)(难度7)

C数据结构与算法实现&#xff08;目录&#xff09; 答案在此&#xff1a;二叉查找树&#xff08;binary search tree&#xff09;&#xff08;答案&#xff09; 写在前面 部分内容参《算法导论》 基本接口实现 1 删除 删除值为value的第一个节点 删除叶子节点1 删除叶子节…...

windows环境装MailHog

背景&#xff1a;win10系统&#xff0c;windows 宝塔&#xff0c;laravel 项目&#xff0c;邮件相关需要装一个MailHog 下载地址&#xff1a;https://sourceforge.net/projects/mailhog.mirror/ 直接下载&#xff0c;下载后双击运行就可以了&#xff0c;系统可能提示”不信任“…...

Ubuntu 22.04.2 LTS 安装python3.6后报错No module named ‘ufw‘

查明原因&#xff1a; vim /usr/sbin/ufw 初步判断是python版本的问题。 # 查看python3软链接 ll /usr/bin/python3 将python3的软链接从python3.6换成之前的3.10&#xff0c;根据自己电脑情况。 可以查看下 /usr/bin 下有什么 我这是python3.10 所以解决办法是 # 移除py…...

Flutter小功能实现-咖啡店

1 导航栏实现 效果图&#xff1a; 1.Package google_nav_bar: ^5.0.6 使用文档&#xff1a; google_nav_bar | Flutter Package 2.Code //MyBottomNavBar class MyBottomNavBar extends StatelessWidget {void Function(int)? onTabChange;MyBottomNavBar({super.key, …...

JavaSE 集合框架及背后的数据结构

目录 1 介绍2 学习的意义2.1 Java 集合框架的优点及作用2.2 笔试及面试题 3 接口 interfaces3.1 基本关系说明3.2 Collection 常用方法说明3.3 Collection 示例3.4 Map 常用方法说明3.5 Map 示例 4 实现 classes5 Java数据结构知识体系5.1 目标5.2 知识点 1 介绍 集合&#xf…...

-9501 MAL系统没有配置或者服务器不是企业版(dm8达梦数据库)

dm8达梦数据库 -9501 MAL系统没有配置或者服务器不是企业版&#xff09; 环境介绍1 环境检查2 问题原因 环境介绍 搭建主备集群时&#xff0c;遇到报错-9501 MAL系统没有配置或者服务器不是企业版 1 环境检查 检查dmmal.ini配置文件权限正确 dmdba:dinstall&#xff0c;内容正…...

云备份——第三方库简单介绍并使用(上)

目录 一&#xff0c;Jsoncpp库序列化和反序列化 二&#xff0c;bundle文件压缩库 2.1 文件压缩 2.2 文件解压 一&#xff0c;Jsoncpp库序列化和反序列化 首先我们需要先了解一下json是什么&#xff0c;json是一种数据交换格式&#xff0c;采用完全独立于编程语言的文本格式来…...

MySQL数据库之索引

目录 一、索引的概念 二、索引的作用 三、索引的副作用 四、创建索引的规则 1、适合创建为索引的字段的规则 2、MySQL的优化 哪些字段/场景适合创建索引&#xff0c;哪些不适合 五、索引的分类和创建 1、索引的分类 2、三种创建方式 3、索引的创建演示 1、创建普通索…...

OpenCV(四):Mat支持的运算

目录 1.对两个 Mat 对象按元素进行运算&#xff0c;有加法、减法、乘法和除法等运算。 2.Mat类支持逻辑与、或、非等逻辑运算&#xff0c; 1.对两个 Mat 对象按元素进行运算&#xff0c;有加法、减法、乘法和除法等运算。 加法&#xff1a;Mat Mat&#xff0c;保存到 resul…...

WebRTC音视频通话-WebRTC推拉流过程中日志log输出

WebRTC音视频通话-WebRTC推拉流过程中日志log输出 之前实现iOS端调用ossrs服务实现推拉流流程。 推流&#xff1a;https://blog.csdn.net/gloryFlow/article/details/132262724 拉流&#xff1a;https://blog.csdn.net/gloryFlow/article/details/132417602 在推拉流过程中的…...

用Jmeter压测问题解决

最近做一个基于duboo服务的接口&#xff0c;需要进行稳定性测试。但是用Jmeter GUI 方式跑只能持续2个小时左右&#xff0c;Jmeter就崩溃了&#xff0c;日志报错&#xff1a;out of memory 解决方法如下&#xff1a; 直接运行jmeter的java包试试&#xff1a; 1、打开jmeter.…...

C语言:字符函数和字符串函数(一篇拿捏字符串函数!)

目录 求字符串长度&#xff1a; 1. strlen(字符串长度) 长度不受限制函数&#xff1a; 2. strcpy(字符串拷贝) 3. strcat(字符串追加) 4. strcmp(字符串比较) 长度受限制函数&#xff1a; 5. strncpy(字符串拷贝) 6. strncat(字符串追加) 7. strncmp(字符串比较) 字…...

问道管理:成交量买卖公式?

跟着股票商场的如火如荼&#xff0c;人们对于怎么解读和使用成交量进行股票生意的需求日积月累。成交量是指在某一特定时间内进行的股票生意的数量&#xff0c;它是投资者们研判商场状况和制定生意战略的重要指标之一。那么&#xff0c;是否存在一种最厉害的成交量生意公式呢&a…...

【MySQL】5、MySQL高阶语句

一、常用查询&#xff08;增、删、改、查&#xff09; 对 MySQL 数据库的查询&#xff0c;除了基本的查询外&#xff0c;有时候需要对查询的结果集进行处理。 例如只取 10 条数据、对查询结果进行排序或分组等等 模板表&#xff1a; 数据库有一张info表&#xff0c;记录了学生…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...