当前位置: 首页 > news >正文

代码随想录算法训练营第五十二天 | 300.最长递增子序列,674. 最长连续递增序列,718. 最长重复子数组

代码随想录算法训练营第五十二天 | 300.最长递增子序列,674. 最长连续递增序列,718. 最长重复子数组

  • 300.最长递增子序列
  • 674. 最长连续递增序列
  • 718. 最长重复子数组

300.最长递增子序列

题目链接
视频讲解
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度,子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序,例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列

输入:nums = [10,9,2,5,3,7,101,18]
输出:4

dp[i]的定义
本题中,正确定义dp数组的含义十分重要
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度,为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢
状态转移方程
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值
所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值
dp[i]的初始化
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
确定遍历顺序
dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历
j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了
遍历i的循环在外层,遍历j则在内层,代码如下:

for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列
}

举例推导dp数组
输入:[0,1,0,3,2],dp数组的变化如下:
在这里插入图片描述

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674. 最长连续递增序列

题目链接
视频讲解
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度,连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列

输入:nums = [1,3,5,4,7]
输出:3

动规五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]
注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置
确定递推公式
如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1,即:dp[i] = dp[i - 1] + 1;
因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]
dp数组如何初始化
以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素
所以dp[i]应该初始1;
确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:

for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}
}

举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:
在这里插入图片描述
注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718. 最长重复子数组

题目链接
视频讲解
给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3

确定dp数组(dp table)以及下标的含义
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧,其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始
那有人问了,定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?行倒是行! 但实现起来就麻烦一点,需要单独处理初始化部分,在本题解下面的拓展内容里,我给出了 第二种 dp数组的定义方式所对应的代码和讲解,大家比较一下就了解了
确定递推公式
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来
即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
根据递推公式可以看出,遍历i 和 j 要从1开始!
dp数组如何初始化
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来
确定遍历顺序
外层for循环遍历A,内层for循环遍历B
同时题目要求长度最长的子数组的长度,所以在遍历的时候顺便把dp[i][j]的最大值记录下来
代码如下:

for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}
}

举例推导dp数组
拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:
在这里插入图片描述

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

相关文章:

代码随想录算法训练营第五十二天 | 300.最长递增子序列,674. 最长连续递增序列,718. 最长重复子数组

代码随想录算法训练营第五十二天 | 300.最长递增子序列&#xff0c;674. 最长连续递增序列&#xff0c;718. 最长重复子数组 300.最长递增子序列674. 最长连续递增序列718. 最长重复子数组 300.最长递增子序列 题目链接 视频讲解 给你一个整数数组 nums &#xff0c;找到其中最…...

计算机图形软件(三)6-6 小结

小结 这一章概括了图形软件系统的主要特点。某些软件系统&#xff0c;如 CAD 软件包和绘图程序&#xff0c;其为特定应用而设计。另外一些软件系统则提供可以在诸如 C的程序设计语言中使用的一个通用图形子程序库&#xff0c;用来为任何应用生成图片。 ISO和AN…...

Flink常用函数

1、比较函数 <> > > < < 注意&#xff1a;select nullnull; 返回为nullIS NULL 、 IS NOT NULL --非空判断value1 IS DISTINCT FROM value2、value1 IS NOT DISTINCT FROM value2、 --不同于value1 BETWEEN [ ASYMMETRIC | S OR 、AND、NOT boolean…...

stable diffusion实践操作-embedding(TEXTUAL INVERSION)

本文专门开一节写图生图相关的内容&#xff0c;在看之前&#xff0c;可以同步关注&#xff1a; stable diffusion实践操作 可以理解为提示词的集合&#xff0c;可以省略大量的提示词。后缀safetensors&#xff0c;大小几十kb 正文 1、功能 可以理解为提示词的集合&#xff0…...

代码随想录二刷day03

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣203. 移除链表元素二、力扣707. 设计链表三、力扣206. 反转链表 前言 一、力扣203. 移除链表元素 /*** Definition for singly-linked list.* public…...

初出茅庐的小李博客之STM32F103C8T6音乐控制器实战教程【1】

STM32F103C8T6音乐控制器实战教程[1] USB简单介绍&#xff1a; "USB"代表通用串行总线&#xff08;Universal Serial Bus&#xff09;&#xff0c;是一种用于连接计算机及其外部设备的标准接口。USB接口允许各种设备&#xff08;如打印机、存储设备、键盘、鼠标、摄…...

苍穹外卖01-项目概述、环境搭建

项目概述、环境搭建 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示&#xff1a; 管理端-外卖商家使用用户端-点餐用户使用当我们完成该项目的学习&#xff0c;可以培养以下能力&#xff1a; 1. 软件开发整体介绍 作为一名软…...

图床项目进度(二)——动态酷炫首页

前言&#xff1a; 前面的文章我不是说我简单copy了站友的一个登录页吗&#xff0c;我感觉还是太单调了&#xff0c;想加一个好看的背景。 但是我前端的水平哪里够啊&#xff0c;于是在网上找了找制作动态背景的插件。 效果如下图。 如何使用 这个插件是particles.js 安装…...

Java“魂牵”京东商品详情描述数据,京东商品详情API接口,京东API接口申请指南

要通过京东的API获取商品详情描述数据&#xff0c;您可以使用京东开放平台提供的接口来实现。以下是一种使用Java编程语言实现的示例&#xff0c;展示如何通过京东开放平台API获取商品详情&#xff1a; 首先&#xff0c;确保您已注册成为京东开放平台的开发者&#xff0c;并创…...

Flink SQL你用了吗?

分析&回答 Flink 1.1.0&#xff1a;第一次引入 SQL 模块&#xff0c;并且提供 TableAPI&#xff0c;当然&#xff0c;这时候的功能还非常有限。Flink 1.3.0&#xff1a;在 Streaming SQL 上支持了 Retractions&#xff0c;显著提高了 Streaming SQL 的易用性&#xff0c;使…...

【位运算】leetcode面试题:消失的两个数字

一.题目描述 消失的两个数字 二.思路分析 本题难度标签是困难&#xff0c;但实际上有了只出现一次的数字iii这道题的铺垫&#xff0c;本题的思路还是很容易想到的。 温馨提示&#xff1a;阅读本文前可以先查看我的【位运算】专栏的第一篇文章&#xff0c;其中包含位运算这类…...

Vue2 集成 CodeMirror 实现公式编辑、块状文本编辑,TAG标签功能

效果图 安装codemirror依赖 本示例为Vue2项目&#xff0c;安装低版本的依赖 npm i codemirror5.65.12 npm i vue-codemirror4.0.6 实现 实现代码如下&#xff0c;里边涉及到的变量和函数自行替换即可&#xff0c;没有其他复杂逻辑。 <template><div class"p…...

CCF-CSP 30次 第二题【矩阵运算】

计算机软件能力认证考试系统 #include<bits/stdc.h> using namespace std; const int N1e410; #define int long long int n,d; int q[N][22],k[22][N],v[N][22],w[N]; int ans1[N][22],ans2[N][22]; signed main() {scanf("%lld %lld",&n,&d);for(in…...

最大子数组和【贪心算法】

最大子数组和 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#xff09;&#xff0c;返回其最大和。 子数组 是数组中的一个连续部分。 class Solution {public int maxSubArray(int[] nums) {//记录最大结果&…...

linux并发服务器 —— Makefile与GDB调试(二)

Makefile Makefile&#xff1a;定义规则指定文件的编译顺序&#xff1b;类似shell脚本&#xff0c;执行操作系统命令 优点&#xff1a;自动化编译——通过make&#xff08;解释Makefile文件中指令的命令&#xff09;命令完全编译整个工程&#xff0c;提高软件开发效率&#x…...

Ansible学习笔记14

实现多台的分离实现&#xff1a; [rootlocalhost playbook]# cat example3.yaml --- - hosts: 192.168.17.105remote_user: roottasks:- name: create test1 directoryfile: path/test1/ statedirectory- hosts: 192.168.17.106remote_user: roottasks:- name: create test2 d…...

docker 安装 mysql 并挂载 配置文件和数据目录

1、宿主机创建挂载目录 sudo mkdir /path/mysql/data sudo mkdir /path/mysql/conf2、搜索镜像 docker search mysql拉取官方支持版本&#xff08;OFFICIAL 为 ok的版本&#xff09; docker pull mysql:latest3、以 mysql 作为基础镜像构建容器并挂载目录 docker run -d -p…...

代码随想录训练营 DP01

代码随想录训练营 DP01 509. &#x1f338;斐波那契数&#x1f338;code 70. &#x1f338;爬楼梯&#x1f338;code 746. &#x1f338;使用最小花费爬楼梯&#x1f338;code 509. &#x1f338;斐波那契数&#x1f338; 斐波那契数 &#xff08;通常用 F(n) 表示&#xff09;…...

github+hexo 博客搭建

文章目录 1.安装Node.js、Git和Hexo2.创建 GitHub 仓库并配置ssh3.初始化Hexo4.配置Hexo5.创建博客内容6.部署7.查看8.参考&#xff1a;9.选择主题&#xff1a; 环境&#xff1a;win11wsl 1.安装Node.js、Git和Hexo 打开终端安装以下软件 sudo apt update sudo apt-get insta…...

Spring Security bug记录:antMatchers找不到符号(已解决)

目录 Spring Security bug记录&#xff1a;antMatchers找不到符号&#xff08;已解决&#xff09;原因&#xff1a;解决&#xff1a;参考链接&#xff1a; Spring Security bug记录&#xff1a;antMatchers找不到符号&#xff08;已解决&#xff09; 原因&#xff1a; 新版本…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...