当前位置: 首页 > news >正文

Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

一、前言:

使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片

安装包:

pip install super_gradients
pip install omegaconf
pip install hydra-core
pip install boto3
pip install stringcase
pip install typing-extensions
pip install rapidfuzz
pip install Cython
pip install pycocotools
pip install onnx-simplifier

二、步骤:

  1. 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision
  2. 下载 YOLO_NAS_S 模型的权重文件,并加载模型
  3. 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理
  4. 使用模型进行目标检测,并获取预测结果
  5. 解析预测结果,并保存预测到的主体图片

三、代码:

from PIL import Imageimport torch
from super_gradients.training import modelsdevice = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)predictions = out[0]
# 提取预测框对应的主体图像并保存
num = 1
for bbox in predictions.prediction.bboxes_xyxy:x1, y1, x2, y2 = bbox[:4]  # 每个预测框的坐标image = Image.open(r"D:\Desktop\tp.png")cropped_image = image.crop((x1, y1, x2, y2))  # 根据坐标裁剪图像output_path = f"output_{num}.jpg"cropped_image.save(output_path)  # 保存裁剪后的图像num += 1

被检测的图片:

预测主体效果:

 如果在原图的基础上查看代码如下:

from PIL import Imageimport torch
from super_gradients.training import modelsdevice = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
out.save("save_folder_path")

结果:

相关文章:

Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

一、前言: 使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片 安装包: pip install super_gradients pip install omegaconf pip install hydra-core pip install boto3 pip install stringcase pip install typing-extensions pi…...

<AIX>《AIX RAID 操作之LV逻辑卷镜像制作,即lvcopy操作》

《AIX RAID 操作之LV逻辑卷镜像制作,即lvcopy操作》 1 RAID技术2 AIX逻辑卷组做镜像3 环境3.1 操做系统版本3.2 检查rootvg的lv3.3 检查rootvg的磁盘信息4 创建测试的test的lv逻辑卷4.1 测试1:直接创建镜像lv4.2 测试2:创建未开启镜像的lv 5 …...

JSX底层渲染机制

JSX底层渲染机制 一,.步骤 1.把我们写的jsx语法编译为虚拟DOM【virtualDOM】 虚拟DOM对象:框架自己内部构建的一套对象体系(对象的相关成员都是React内部绑定的),基于这些属性描述出我们所构建视图中的DOM接的相关特征 1基于ba…...

2023_Spark_实验六:Scala面向对象部分演示(二)(IDEA开发)

7、Scala中的apply方法() 遇到如下形式的表达式时,apply方法就会被调用: Object(参数1,参数2,......,参数N) 通常,这样一个apply方法返回的是伴生类的对象;其作用是为了省略new关键字 Object的apply方法…...

ArcGIS美化科研论文地图(利用在线底图)

1.加载在线底图服务 在ArcGIS Desktop中打开Catalog窗口,在GIS Servers中点击Add ArcGIS Server,之后选项全部默认,仅在URL中输入以下网址https://services.arcgisonline.com/arcgis 之后就可以看到底图了 我们在WorldElevation3D中选择Nat…...

vue项目静态文件资源下载

业务场景:页面有一个导入功能,需要一个模板文件供下载,文件放在本地。 对于 Vue 3 Vite 项目,使用 require 方法来导入模块是不被支持的。require 是 CommonJS 规范中用于模块导入的方法,在 Webpack 等构建工具中常用…...

Apache Hudi初探(三)(与flink的结合)--flink写hudi的操作(真正的写数据)

背景 在之前的文章中Apache Hudi初探(二)(与flink的结合)–flink写hudi的操作(JobManager端的提交操作) 有说到写hudi数据会涉及到写hudi真实数据以及写hudi元数据,这篇文章来说一下具体的实现 写hudi真实数据 这里的操作就是在HoodieFlinkWriteClient.upsert方法: public …...

解释 Git 的基本概念和使用方式(InsCode AI 创作助手)

Git 是一种分布式版本控制系统,它允许多个用户协同工作并对项目进行版本控制。下面是 Git 的基本概念和使用方式: 基本概念: 仓库(Repository):存储代码和版本历史记录的地方。 提交(Commit&a…...

【QT】信号和槽(15)

前面的内容说了很多不同的控件如何使用,今天来看下QT的核心,信号与槽(Signals and slots)! 简单理解一下,就是我们的信号与槽连接上了之后,发射一个信号给到槽,槽函数接收到了这个信…...

EFLK日志平台(filebeat-->kafka-->logstash-->es-->kiabana)

ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。 安装顺序 1.安装es 7.17.12 2.安装kibana 7.17.12 3.安装x-pack 保证以上调试成功后开始下面…...

C盘扩容遇到的问题(BitLocker解密、)

120G的C盘不知不觉的就满了,忍了好久终于要动手了。 尽管电脑-管理--磁盘管理里可以进行磁盘大小调整,但由于各盘都在用,不能够连续调整,所以选用DiskGenius。 # DiskGenius调整分区大小遇到“您选择的分区不支持无损调整容量” …...

ShardingSphere——柔性事务SEATA原理

摘要 Apache ShardingSphere集成了 SEATA 作为柔性事务的使用方案,本文主要介绍其实现ShardingSphere中柔性事务SEATA原理原理。帮助你更好的理解ShardingSphere原理。同时帮助大家更好的使用柔性事务SEATA原理。 一、Seata柔性事务 Apache ShardingSphere 集成了…...

Introducing GlobalPlatform(一篇了解GP)

安全之安全(security)博客目录导读 TEE之GP(Global Platform)认证汇总 目录 一、GP简介 二、GP新的重点领域是什么? 三、认证程序和培训<...

Ubuntu 18.04上无法播放MP4格式视频解决办法

ubuntu18.04系统无法播放MP4格式视频&#xff0c;提示如下图所示&#xff1a; 解决办法&#xff1a; 1、首先&#xff0c;确保ubuntu系统已完全更新。可使用以下命令更新软件包列表&#xff1a;sudo apt update&#xff0c;然后使用以下命令升级所有已安装的软件包&#xff1a…...

科技驱动产业升级:浅谈制造型企业对MES系统的应用

在科技不断进步的背景下&#xff0c;制造型行业也在持续发展&#xff0c;但随之而来的挑战也不断增加。传统的管理方式已经无法满足企业的需求&#xff0c;因此许多制造型企业开始寻找新的管理模式。制造执行系统&#xff08;MES&#xff09;作为先进的制造信息技术之一&#x…...

智能化新十年,“全栈智能”定义行业“Copilot智能助手”

“智能化转型是未来十年中国企业穿越经济周期的利器”&#xff0c;这是联想集团执行副总裁兼中国区总裁刘军在去年联想创新科技大会上做出的判断&#xff0c;而2023年正值第四次工业革命第二个十年的开端&#xff0c;智能化是第四次工业革命的主题。2023年初&#xff0c;基于谷…...

Docker资源控制cgroups

文章目录 一、docker资源控制1、资源控制工具2、Cgroups四大功能 二、CPU 资源控制1、设置CPU使用率上限2、CPU压力测试3、Cgroups限制cpu使用率4、设置CPU资源占用比&#xff08;设置多个容器时才有效&#xff09;5、设置容器绑定指定的CPU 三、对内存使用的限制四、对磁盘IO配…...

通过python 获取当前局域网内存在的IP和MAC

通过python 获取当前局域网内存在的ip 通过ipconfig /all 命令获取局域网所在的网段 通过arp -d *命令清空当前所有的arp映射表 循环遍历当前网段所有可能的ip与其ping一遍建立arp映射表 for /L %i IN (1,1,254) DO ping -w 1 -n 1 192.168.3.%i 通过arp -a命令读取缓存的映射表…...

解决D盘的类型不是基本,而是动态的问题

一、正确的图片 1.1图片 1.2本人遇到的问题 二、将动态磁盘 转为基本盘 2.1 基本概念&#xff0c;动态无法转化为基本&#xff0c;不是双向的&#xff0c;借助软件 网址&#xff1a;转换动态磁盘到普通磁盘_检测到计算机本地磁盘为动态分区_卫水金波的博客-CSDN博客 2.2分区…...

如何判断自己的qt版本呢?

如何判断自己的qt版本呢? 前情提要很简单,按照如下图所示,即可查看当前打开的qtCreator的版本如何打开5.15.2版本的qtCreator呢?安装教程 前情提要 我的电脑已经安装了qt5.14.1,然后我又安装了qt5.15.2,我想尝试一下同一台电脑能否适应两个版本的qt? 当我安装完成qt5.15.2后…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...