当前位置: 首页 > news >正文

C语言深入理解指针(非常详细)(二)

目录

  • 指针运算
    • 指针+-整数
    • 指针-指针
    • 指针的关系运算
  • 野指针
    • 野指针成因
      • 指针未初始化
      • 指针越界访问
      • 指针指向的空间释放
    • 如何规避野指针
      • 指针初始化
      • 注意指针越界
      • 指针不使用时就用NULL
      • 避免返回局部变量的地址
  • assert断言
  • 指针的使用和传址调用
    • 传址调用
    • 例子(strlen函数的实现)

指针运算

指针的基本运算有三种,分别是:
• 指针±整数
• 指针-指针
• 指针的关系运算

指针±整数

因为数组在内存中是连续存放的,比如int类型的数组,每个元素相差4个字节,因此我们只需要知道首元素的地址就可以通过加减的方式找到后面元素的地址

int arr[10] = {1,2,3,4,5,6,7,8,9,10}
#include <stdio.h>
//指针+- 整数
int main()
{
int arr[10] = {1,2,3,4,5,6,7,8,9,10};
int *p = &arr[0];
int i = 0;
int sz = sizeof(arr)/sizeof(arr[0]);
for(i=0; i<sz; i++)
{
printf("%d ", *(p+i));//p+i 这⾥就是指针+整数 i每增加1就往后移动4个字节
}
return 0;
}

指针-指针

/指针-指针
#include <stdio.h>
int my_strlen(char *s)
{
char *p = s;
while(*p != '\0' )//遇到\0就代表字符串结束
p++;
return p-s;//同过着两个指针相减我们可以得到这个指针的总长度
}
int main()
{
printf("%d\n", my_strlen("abc"));
return 0;
}

指针的关系运算

//指针的关系运算
#include <stdio.h>
int main()
{
int arr[10] = {1,2,3,4,5,6,7,8,9,10};
int *p = &arr[0];//取数组首元素地址
int i = 0;
int sz = sizeof(arr)/sizeof(arr[0]);
while(p<arr+sz) //指针的⼤⼩⽐较
{
printf("%d ", *p);
p++;//p没加1就增加4个字节
}
return 0;
}

野指针

概念:野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的

野指针成因

指针未初始化

#include <stdio.h>
int main()
{
int *p;//局部变量指针未初始化,默认为随机值
*p = 20;
return 0;
}

指针越界访问

#include <stdio.h>
int main()
{
int arr[10] = {0};
int *p = &arr[0];
int i = 0;
for(i=0; i<=11; i++)//i=10和i=11时越界了
{
//当指针指向的范围超出数组arr的范围时,p就是野指针
*(p++) = i;
}
return 0;
}

指针指向的空间释放

#include <stdio.h>
int* test()
{
int n = 100;
return &n;//不是全局变量,在函数结束后地址就会消失
}
int main()
{
int*p = test();
printf("%d\n", *p);
return 0;
}

如何规避野指针

指针初始化

如果明确知道指针指向哪里就直接赋值地址,如果不知道指针应该指向哪里,可以给指针赋值NULL(空指针,也可以理解为0,但是不完全是0,因为0有整形和char类型,只是有那个意思)
NULL 是C语言中定义的⼀个标识符常量,值是0,0也是地址,这个地址是无法使用的,读写该地址会报错

#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endi

初始化如下

#include <stdio.h>
int main()
{
int num = 10;
int*p1 = &num;
int*p2 = NULL;
return 0;
}

注意指针越界

⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问

指针不使用时就用NULL

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使用这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的一个规则就是:只要是NULL指针就不去访问
因此使用指针之前可以判断指针是否为NULL。
这里就是用if语句判断

int main()
{
int arr[10] = {1,2,3,4,5,67,7,8,9,10};
int *p = &arr[0];
for(i=0; i<10; i++)
{
*(p++) = i;
}
//此时p已经越界了,可以把p置为NULL
p = NULL;
//下次使⽤的时候,判断p不为NULL的时候再使⽤
//...
p = &arr[0];//重新让p获得地址
if(p != NULL) //判断
{
//...
}
return 0;
}

避免返回局部变量的地址

我们就需要创建的变量不是局部变量,也就是说我们可以创建全局变量,当然你可以在mian函数里面创建变量,然后将变量的地址传入函数中,再通过函数进行一系列操作,结束时可以将变量的地址传出,这样就可以避免返回局部变量了。

assert断言

assert.h 头文件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如果不符合,就报错终止运行。这个宏常常被称为“断言”
可以理解为进行了一次安检,在通过时会对这个变量进行检测,判断是否符合条件

 assert(p != NULL);

上面代码在程序运行到这⼀行语句时,验证变量 p 是否等于 NULL 。
如果确实不等于 NULL ,程序继续运行,否则就会终止运行,并且给出报错信息提示
assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生任何作用,程序继续运行。
如果该表达式为假(返回值为零),assert() 就会报错,在标准错误流 stderr 中写入⼀条错误信息,显示没有通过的表达式,以及包含这个表达式的文件名和行号。
assert() 的使用对程序员是非常友好的,使用 assert() 有几个好处:它不仅能自动标识文件和出问题的行号,还有⼀种无需更改代码就能开启或关闭 assert() 的机制。
如果已经确认程序没有问题,不需要再做断言,就在 #include <assert.h> 语句的前面,定义⼀个NDEBUG

#define NDEBUG
#include <assert.h>

然后,重新编译程序,编译器就会禁用文件中所有的 assert() 语句。如果程序又出现问题,可以移除这条 #define NDBUG 指令(或者把它注释掉),再次编译,这样就重新启用了 assert() 语句。
assert() 的缺点是,因为引入了额外的检查,增加了程序的运行时间。
⼀般我们可以在debug中使用,在release版本中选择禁用assert就行,在VS这样的集成开发环境中,在release版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在release版本不影响用户使用时程序的效率

指针的使用和传址调用

传址调用

学习指针的目的是使用指针解决问题,那什么问题,非指针不可呢?
例如:写⼀个函数,交换两个整型变量的值

#include <stdio.h>
void Swap1(int x, int y)
{
int tmp = x;
x = y;
y = tmp;
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
printf("交换前:a=%d b=%d\n", a, b);
Swap1(a, b);
printf("交换后:a=%d b=%d\n", a, b);
return 0;
}

代码运行入下:
在这里插入图片描述
在main函数内部,创建了a和b,a的地址是在调用Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是
x和y确实接收到了a和b的值,不过x的地址和a的地址不一样,y的地址和b的地址不一样,相当于x和y是独立的空间,那么在Swap1函数内部交换x和y的值,自然不会影响a和b,当Swap1函数调用结束后回到main数,a和b的没法交换。Swap1函数在使用的时候,是把变量本⾝直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用
。因此当我们传入内存后,运行结果如下:
在这里插入图片描述
我们可以看到实现成Swap2的方式,顺利完成了任务,这里调用Swap2函数的时候是将变量的地址传
递给了函数,这种函数调用方式叫:传址调用

结论:实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实参。所以Swap是失败的了

例子(strlen函数的实现)

//计数器⽅式
int my_strlen(const char * str)
{
int count = 0;
assert(str);
while(*str)
{
count++;
str++;
}
return count;
}
int main()
{
int len = my_strlen("abcdef");
printf("%d\n", len);
return 0;
}

相关文章:

C语言深入理解指针(非常详细)(二)

目录 指针运算指针-整数指针-指针指针的关系运算 野指针野指针成因指针未初始化指针越界访问指针指向的空间释放 如何规避野指针指针初始化注意指针越界指针不使用时就用NULL避免返回局部变量的地址 assert断言指针的使用和传址调用传址调用例子&#xff08;strlen函数的实现&a…...

Web3j 继承StaticStruct的类所有属性必须为Public <DynamicArray<StaticStruct>>

Web3j 继承StaticStruct的类所有属性必须为Public&#xff0c;属性的顺序和数量必须和solidity 里面的struct 属性相同&#xff0c;否则属性少了或者多了的时候会出现错位 Web3j 继承StaticStruct的类所有属性不能为private&#xff0c;因为web3j 是通过长度去截取返回值解析成…...

Kubernetes(k8s)上安装Prometheus和Grafana监控

Kubernetes上安装Prometheus和Grafana监控 环境准备Kubernetes准备 安装项目开始安装下载安装的项目安装项目替换镜像替换kube-state-metrics替换prometheus-adapter 修改Service修改alertmanager-service.yaml修改grafana-service.yaml修改prometheus-service.yaml 执行这些ya…...

黑马 软件测试从0到1 常用分类 模型 流程 用例

课程内容&#xff1a; 1、软件测试基础 2、测试设计 3、缺陷管理 4、Web常用标签 5、项目实战 以终为始&#xff0c;由交付实战目标为终&#xff0c;推出所学知识&#xff1b;从认识软件及软件测试&#xff0c;到如何设计测试、缺陷标准及缺陷管理&#xff0c;最终以项目实战贯…...

面试中的商业思维:如何展示你对业务的理解

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

Docker切换文件系统为VFS

一、介绍 Docker支持AUFS、Btrfs、Device Mapper、OverlayFS、VFS、ZFS六种不同的存储驱动。 1. AUFS AUFS是一种常见的存储驱动程序&#xff0c;它也使用了Linux内核的AUFS文件系统。它的优点是支持所有的Linux发行版&#xff0c;可以在不同的容器之间共享文件系统&#xf…...

Spring Security存在认证绕过漏洞 CVE-2021-22096

文章目录 0.前言1.参考文档2.基础介绍漏洞影响范围&#xff1a;官方说明&#xff1a;修复版本&#xff1a;漏洞利用步骤&#xff1a;修复方式&#xff1a; 3.解决方案 0.前言 背景&#xff1a;项目被扫到Spring Boot 的漏洞&#xff0c;严格的说应该是Spring Security 组件的漏…...

前端list列表自定义图标并设置大小

前端list列表自定义图标并设置大小 一、前端list列表基础知识回顾 前端公有两种列表&#xff0c;一种是有序列表&#xff08;ol&#xff09;&#xff0c;一种是无序列表&#xff08;ul&#xff09;&#xff0c;它们的子元素都是&#xff08;li&#xff09;。 1.1 有序列表&a…...

Multisim14.0仿真(五)三角波发生器

一、仿真原理图&#xff1a; 二、仿真效果&#xff1a;...

使用安全复制命令scp在Windows系统和Linux系统之间相互传输文件

现在已经有很多远程控制服务器的第三方软件平台&#xff0c;比如FinalShell&#xff0c;MobaXterm等&#xff0c;半可视化界面&#xff0c;使用起来非常方便和友好&#xff0c;两个系统之间传输文件直接拖就行&#xff0c;当然也可以使用命令方式在两个系统之间相互传递。 目录…...

SOC总线学习记录之ICB(Internal Chip Bus)

蜂鸟E203总线&#xff1a; 采用自定义总线协议 ICB&#xff08;Internal Chip Bus&#xff09;&#xff0c;该总线用于蜂鸟 E203 内核内部使用&#xff0c;同时也可作为 SoC 中的总线使用。 ICB 总线的初衷是为了能够尽可能地结合 AXI 总线和 AHB 总线的优点&#xff0c;兼具高…...

rabbitMQ手动应答与自动应答

手动应答模式(manual) 解释: 手动应答:既是当消费者消费了队列中消息时需要给队列一个应答,告诉队列这条消息我已经消费了,可以删除了; 若是不应答,即使消费了 队列没收到消费成功的提示 所有消息会一直在队列中; 注意 注意 注意:重要的事情说三遍,下面说的…...

java对象创建的过程

1、检查指令的参数是否能在常量池中定位到一个类的符号引用 2、检查此符号引用代表的类是否已被加载、解析和初始化过。如果没有&#xff0c;就先执行相应的类加载过程 3、类加载检查通过后&#xff0c;接下来虚拟机将为新生对象分配内存。 4、内存分配完成之后&#xff0c;…...

WireShark流量抓包详解

目录 Wireshark软件安装Wireshark 开始抓包示例Wireshakr抓包界面介绍WireShark 主要界面 wireshark过滤器表达式的规则 Wireshark软件安装 软件下载路径&#xff1a;wireshark官网。按照系统版本选择下载&#xff0c;下载完成后&#xff0c;按照软件提示一路Next安装。 Wire…...

【密码学代码分享】突破ECDSA算法封装--JS无三方包纯手写ECDSA

ECDSA&#xff08;Elliptic Curve Digital Signature Algorithm&#xff09;是一种基于椭圆曲线密码学的数字签名算法。它用于确保数字数据的完整性和身份验证&#xff0c;通常在信息安全和加密通信中使用。在日常使用中&#xff0c;通常会使用一些函数库来实现完成这个算法的功…...

stable diffusion实践操作-文生图

本文专门开一节写文生图相关的内容&#xff0c;在看之前&#xff0c;可以同步关注&#xff1a; stable diffusion实践操作 正文 1 liblib SD1.5底模 lora(baihuaniang_1.0) 详细信息&#xff1a; 底模&#xff1a;SD 1.5 Lora:baihuaniang_1.0 正向提示词&#xff1a; Best …...

Spring容器及实例化

一、前言 Spring 容器是 Spring 框架的核心部分&#xff0c;它负责管理和组织应用程序中的对象&#xff08;Bean&#xff09;。Spring 容器负责创建、配置和组装这些对象&#xff0c;并且可以在需要时将它们提供给应用程序的其他部分。 Spring 容器提供了两种主要类型的容器&…...

# Go学习-Day9

文章目录 Channel声明存入取出一个简单的死锁分析 个人博客&#xff1a;CSDN博客 Channel Channel本质是一个队列多goroutine访问时不需要加锁&#xff0c;Channel天然线程安全channel有类型&#xff0c;只能写入相同类型channel是引用类型channel必须初始化才能写入数据&…...

chatGPT如何在Java中使用

ChatGPT是一个基于GPT模型的聊天机器人平台&#xff0c;它提供了API接口&#xff0c;可以通过HTTP请求与之交互。您可以使用Java编写程序&#xff0c;通过HTTP请求与ChatGPT进行交互&#xff0c;实现聊天机器人的功能。 具体步骤如下&#xff1a; 1、注册ChatGPT账号并创建应…...

vue+axios——创建多个实例共用请求拦截器和响应拦截器(403错误信息不提示bug解决)——基础积累

创建多个实例共用请求拦截器和响应拦截器&#xff1a;使用的是函数的继承&#xff0c;也就是call()方法&#xff0c;这个方法第一个参数就是this,后面的参数可以是一个也可以是多个。最后一定要记得要return出去&#xff0c;否则接口是拿不到数据的。 import axios from axios…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...