当前位置: 首页 > news >正文

python实现的一些方法,可以直接拿来用的那种

1、日期生成

很多时候我们需要批量生成日期,方法有很多,这里分享两段代码

获取过去 N 天的日期:

import datetimedef get_nday_list(n):before_n_days = []for i in range(1, n + 1)[::-1]:before_n_days.append(str(datetime.date.today() - datetime.timedelta(days=i)))return before_n_daysa = get_nday_list(30)
print(a)

输出:

['2021-12-23', '2021-12-24', '2021-12-25', '2021-12-26', '2021-12-27', '2021-12-28', '2021-12-29', '2021-12-30', '2021-12-31', '2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04', '2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08', '2022-01-09', '2022-01-10', '2022-01-11', '2022-01-12', '2022-01-13', '2022-01-14', '2022-01-15', '2022-01-16', '2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20', '2022-01-21']

生成一段时间区间内的日期:

import datetimedef create_assist_date(datestart = None,dateend = None):# 创建日期辅助表if datestart is None:datestart = '2016-01-01'if dateend is None:dateend = datetime.datetime.now().strftime('%Y-%m-%d')# 转为日期格式datestart=datetime.datetime.strptime(datestart,'%Y-%m-%d')dateend=datetime.datetime.strptime(dateend,'%Y-%m-%d')date_list = []date_list.append(datestart.strftime('%Y-%m-%d'))while datestart<dateend:# 日期叠加一天datestart+=datetime.timedelta(days=+1)# 日期转字符串存入列表date_list.append(datestart.strftime('%Y-%m-%d'))return date_listd_list = create_assist_date(datestart='2021-12-27', dateend='2021-12-30')
d_list

输出:

['2021-12-27', '2021-12-28', '2021-12-29', '2021-12-30']

2、保存数据到CSV

保存数据到 CSV 是太常见的操作了

def save_data(data, date):if not os.path.exists(r'2021_data_%s.csv' % date):with open("2021_data_%s.csv" % date, "a+", encoding='utf-8') as f:f.write("标题,热度,时间,url\n")for i in data:title = i["title"]extra = i["extra"]time = i['time']url = i["url"]row = '{},{},{},{}'.format(title,extra,time,url)f.write(row)f.write('\n')else:with open("2021_data_%s.csv" % date, "a+", encoding='utf-8') as f:for i in data:title = i["title"]extra = i["extra"]time = i['time']url = i["url"]row = '{},{},{},{}'.format(title,extra,time,url)f.write(row)f.write('\n')

3、带背景颜色的 Pyecharts

Pyecharts 作为 Echarts 的优秀 Python 实现,受到众多开发者的青睐,用 Pyecharts 作图时,使用一个舒服的背景也会给我们的图表增色不少

以饼图为例,通过添加 JavaScript 代码来改变背景颜色

def pie_rosetype(data) -> Pie:background_color_js = ("new echarts.graphic.LinearGradient(0, 0, 0, 1, ""[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)c = (Pie(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js))).add("",data,radius=["30%", "75%"],center=["45%", "50%"],rosetype="radius",label_opts=opts.LabelOpts(formatter="{b}: {c}"),).set_global_opts(title_opts=opts.TitleOpts(title=""),))return c

4、requests 库调用

据统计,requests 库是 Python 家族里被引用的最多的第三方库,足见其江湖地位之高大!

发送 GET 请求

import requestsheaders = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36','cookie': 'some_cookie'
}
response = requests.request("GET", url, headers=headers)

发送 POST 请求

import requestspayload={}
files=[]
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36','cookie': 'some_cookie'
}
response = requests.request("POST", url, headers=headers, data=payload, files=files)

根据某些条件循环请求,比如根据生成的日期

def get_data(mydate):date_list = create_assist_date(mydate)url = "https://test.test"files=[]headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36','cookie': ''}for d in date_list:payload={'p': '10','day': d,'nodeid': '1','t': 'itemsbydate','c': 'node'}for i in range(1, 100):payload['p'] = str(i)print("get data of %s in page %s" % (d, str(i)))response = requests.request("POST", url, headers=headers, data=payload, files=files)items = response.json()['data']['items']if items:save_data(items, d)else:break

5、Python 操作各种数据库

操作 Redis

连接 Redis

import redisdef redis_conn_pool():pool = redis.ConnectionPool(host='localhost', port=6379, decode_responses=True)rd = redis.Redis(connection_pool=pool)return rd

写入 Redis

from redis_conn import redis_conn_poolrd = redis_conn_pool()
rd.set('test_data', 'mytest')

操作 MongoDB

连接 MongoDB

from pymongo import MongoClientconn = MongoClient("mongodb://%s:%s@ipaddress:49974/mydb" % ('username', 'password'))
db = conn.mydb
mongo_collection = db.mydata

批量插入数据

res = requests.get(url, params=query).json()
commentList = res['data']['commentList']
mongo_collection.insert_many(commentList)

操作 MySQL

连接 MySQL

import MySQLdb# 打开数据库连接
db = MySQLdb.connect("localhost", "testuser", "test123", "TESTDB", charset='utf8' )# 使用cursor()方法获取操作游标 
cursor = db.cursor()

执行 SQL 语句

# 使用 execute 方法执行 SQL 语句
cursor.execute("SELECT VERSION()")# 使用 fetchone() 方法获取一条数据
data = cursor.fetchone()print "Database version : %s " % data# 关闭数据库连接
db.close()

输出:

Database version : 5.0.45

6、多线程代码

多线程也有很多实现方式

import threading
import timeexitFlag = 0class myThread (threading.Thread):def __init__(self, threadID, name, delay):threading.Thread.__init__(self)self.threadID = threadIDself.name = nameself.delay = delaydef run(self):print ("开始线程:" + self.name)print_time(self.name, self.delay, 5)print ("退出线程:" + self.name)def print_time(threadName, delay, counter):while counter:if exitFlag:threadName.exit()time.sleep(delay)print ("%s: %s" % (threadName, time.ctime(time.time())))counter -= 1# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)# 开启新线程
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print ("退出主线程")

相关文章:

python实现的一些方法,可以直接拿来用的那种

1、日期生成 很多时候我们需要批量生成日期&#xff0c;方法有很多&#xff0c;这里分享两段代码 获取过去 N 天的日期&#xff1a; import datetimedef get_nday_list(n):before_n_days []for i in range(1, n 1)[::-1]:before_n_days.append(str(datetime.date.today() …...

通过HTTP进行并发的数据抓取

在进行大规模数据抓取时&#xff0c;如何提高效率和稳定性是关键问题。本文将介绍一种可操作的方案——使用HTTP代理来实现并发的网页抓取&#xff0c;并帮助您加速数据抓取过程。 1. 选择合适的HTTP代理服务供应商 - 寻找信誉良好、稳定可靠且具备较快响应时间的HTTP代理服务…...

《论文阅读21》Equivariant Multi-View Networks

一、论文 研究领域&#xff1a;计算机视觉 | 多视角数据处理中实现等变性论文&#xff1a;Equivariant Multi-View Networks ICCV 2019 论文链接视频链接 二、论文简述 在计算机视觉中&#xff0c;模型在不同视角下对数据&#xff08;例如&#xff0c;点云、图像等&#xff0…...

【数据结构】| 并查集及其优化实现

目录 一. 并查集基本概念处理过程初始化合并查询小结 二. 求并优化2.1 按大小求并2.2 按秩(高度)求并2.3 路径压缩2.4 类的实现代码2.5 复杂度分析 三. 应用LeetCode 128: 最长连续数列LeetCode 547: 省份数量LeetCode 200: 岛屿数量 一. 并查集基本概念 以一个直观的问题来引入…...

最新ChatGPT程序源码+AI系统+详细图文部署教程/支持GPT4.0/支持Midjourney绘画/Prompt知识库

一、AI系统 如何搭建部署人工智能源码、AI创作系统、ChatGPT系统呢&#xff1f;小编这里写一个详细图文教程吧&#xff01;SparkAi使用Nestjs和Vue3框架技术&#xff0c;持续集成AI能力到AIGC系统&#xff01; 1.1 程序核心功能 程序已支持ChatGPT3.5/GPT-4提问、AI绘画、Mi…...

自动驾驶和辅助驾驶系统的概念性架构(一)

摘要&#xff1a; 本文主要介绍包括功能模块图&#xff0c;涵盖了底层计算单元、示例工作负载和行业标准。 前言 本文档参考自动驾驶计算联盟(Autonomous Vehicle Computing Consortium)关于自动驾驶和辅助驾驶计算系统的概念系统架构。 该架构旨在与SAE L1-L5级别的自动驾驶保…...

【两周学会FPGA】从0到1学习紫光同创FPGA开发|盘古PGL22G开发板学习之数码管静态显示(四)

本原创教程由深圳市小眼睛科技有限公司创作&#xff0c;版权归本公司所有&#xff0c;如需转载&#xff0c;需授权并注明出处 适用于板卡型号&#xff1a; 紫光同创PGL22G开发平台&#xff08;盘古22K&#xff09; 一&#xff1a;盘古22K开发板&#xff08;紫光同创PGL22G开发…...

【洛谷】P3853 路标设置

原题链接&#xff1a;https://www.luogu.com.cn/problem/P3853 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 整体思路&#xff1a;二分答案 由题意知&#xff0c;公路上相邻路标的最大距离定义为该公路的“空旷指数”。在公路上增设一些路标&…...

探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅

探索图像数据中的隐藏信息&#xff1a;语义实体识别和关系抽取的奇妙之旅 1. 简介 1.1 背景 关键信息抽取 (Key Information Extraction, KIE)指的是是从文本或者图像中&#xff0c;抽取出关键的信息。针对文档图像的关键信息抽取任务作为OCR的下游任务&#xff0c;存在非常…...

Gradle问题处理

目录 一、依赖搜索问题1.1 、Gradle不在本地 Maven 存储库中进行搜索一、依赖搜索问题 1.1 、Gradle不在本地 Maven 存储库中进行搜索 场景 build.gradle文件: buildscript {repositories {mavenLocal()google()mavenCentral()}dependencies...

架构:C4 Model

概念 C4说穿了就是几个要素&#xff1a;关系——带箭头的线、元素——方块和角色、关系描述——线上的文字、元素的描述——方块和角色里的文字、元素的标记——方块和角色的颜色、虚线框&#xff08;在C4里面虚线框的表达力被极大的限制了&#xff0c;我觉得可以给虚线框更大…...

数据结构学习系列之顺序表的两种修改方式

方式1&#xff1a;根据顺序表中数据元素的位置进行修改&#xff0c;代码如下&#xff1a;示例代码&#xff1a; int modify_seq_list_1(list_t *seq_list,int pos, int data){if(NULL seq_list){printf("入参为NULL\n");return -1;}if( pos < 0 || pos > seq…...

React:props说明

props是只读对象&#xff08;readonly&#xff09; 根据单项数据流的要求&#xff0c;子组件只能读取props中的数据&#xff0c;不能进行修改props可以传递任意数据 数字、字符串、布尔值、数组、对象、函数、JSX import FileUpdate from ./FileUpdate; export default class …...

Can‘t connect to local MySQL server through socket ‘/tmp/mysql.sock‘

最近在用django框架开发后端时&#xff0c;在运行 $python manage.py makemigrations 命令时&#xff0c;报了以上错误&#xff0c;错误显示连接mysql数据库失败&#xff0c;查看了mysql数据库初始化配置文件my.cnf&#xff0c;我的mysql.sock文件存放路径配置在了/usr/local…...

C++的单例模式

忘记之前有没有写过单例模式了。 再记录一下&#xff1a; 我使用的代码&#xff1a; #ifndef SINGLETON_MACRO_HPP #define SINGLETON_MACRO_HPP#define SINGLETON_DECL(class_name) \ public: \static class_name& instance() { \static class_name s_instance; \return …...

Spring Boot 中 Nacos 配置中心使用实战

官方参考文档 https://nacos.io/zh-cn/docs/quick-start-spring-boot.html 本人实践 1、新建一个spring boot项目 我的spirngboot版本为2.5.6 2、添加一下依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-…...

学生管理系统VueAjax版本

学生管理系统VueAjax版本 使用Vue和Ajax对原有学生管理系统进行优化 1.准备工作 创建AjaxResult类&#xff0c;对Ajax回传的信息封装在对象中 package com.grg.Result;/*** Author Grg* Date 2023/8/30 8:51* PackageName:com.grg.Result* ClassName: AjaxResult* Descript…...

迭代器模式简介

概念&#xff1a; 迭代器模式是一种行为型设计模式&#xff0c;它提供了一种访问集合对象元素的方法&#xff0c;而无需暴露其内部表示。通过使用迭代器&#xff0c;可以按照特定顺序遍历集合中的元素。 特点&#xff1a; 将遍历和具体集合分离&#xff0c;使得能够独立地改…...

四方定理c++题解

题目描述 四方定理是数论中著名的一个定理&#xff0c;指任意一个自然数都可以拆成四个自然数的平方之和。例如&#xff1a; 251^22^22^24^2 对 25来说&#xff0c;还有其他方案&#xff1a; 250^20^23^24^2 以及 250^20^20^25^2 给定一个自然数 n &#xff0c;请输出 n…...

ZDH-权限模块

本次介绍基于ZDH v5.1.2版本 目录 项目源码 预览地址 安装包下载地址 ZDH权限模块 ZDH权限模块-重要名词划分 ZDH权限模块-菜单管理 ZDH权限模块-角色管理 ZDH权限模块-用户配置 ZDH权限模块-权限申请 项目源码 zdh_web: GitHub - zhaoyachao/zdh_web: 大数据采集,抽…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...