当前位置: 首页 > news >正文

机器学习课后习题 --回归

(一)单选题
 

1.以下()组变量之间存在线性回归关系?
A:学生的性别与他的成绩
B:儿子的身高与父亲的身高
C:正方形的边长与面积
D: 正三角形的边长与周长
 

2.回归问题和分类问题的区别是? 
A:回归问题有标签,分类问题没有
B:回归问题输出值是离散的,分类问题输出值是连续的
C:回归问题输出值是连续的,分类问题输出值是离散的
D:回归问题与分类问题在输入属性值上要求不同
 

3.以下说法错误的是?
A:残差是预测值与真实值之间的差值
B:损失函数越小,模型训练得一定越好
C:正则项的目的是为了避免模型过拟合
D:最小二乘法不需要选择学习率
 

4.哪些算法不需要数据归一化?
A:kNN
B:k-means
C:SVM
D: 决策树
 

5.以下()些方法不能用于处理欠拟合?
A:增大正则化系数
B:增加新的特征
C:增加模型复杂度
D:对特征进行变换,使用组合特征或高维特征
 

6.以下哪些方法不能用于处理过拟合?
A:对数据进行清洗
B:增大训练数据的量
C:利用正则化技术
D:增加数据属性的复杂度
 

7.下列关于线性回归分析中的残差(Residuals)说法正确的是?
选项:
A:残差均值总是为零
B:残差均值总是小于零
C:残差均值总是大于零
D:以上说法都不对
 

8.为了观察测试 Y 与 X 之间的线性关系,X 是连续变量,使用下列哪种图形比较适合?
选项:
A:散点图
B:柱形图
C:直方图
D:以上都不对
 

9.假如你在训练一个线性回归模型,则:1. 如果数据量较少,容易发生过拟合。2. 如果假设空间较小,容易发生过拟合。关于这两句话,下列说法正确的是?
选项:
A:1 和 2 都错误
B:1 正确,2 错误
C:1 错误,2 正确
D:1 和 2 都正确
 

10.关于特征选择,下列对 Ridge 回归和 Lasso 回归说法正确的是?
选项:
A:Ridge 回归适用于特征选择
B:Lasso 回归适用于特征选择
C:两个都适用于特征选择
D:以上说法都不对
 

11.构建一个最简单的线性回归模型需要几个系数(只有一个特征)?
选项:
A:1 个
B:2 个
C:3 个
D:4 个
 

12.向量x=[1,2,3,4,-9,0]的L1范数是多少?
A:1
B:19
C:6
D:根号111
 

 

 

 

 

(二)多选题 

1.以下哪些是使用数据规范化(特征缩放)的原因?
 
A:它通过降低梯度下降的每次迭代的计算成本来加速梯度下降
B:它通过减少迭代次数来获得一个好的解,从而加快了梯度下降的速度
C:它不能防止梯度下降陷入局部最优

D:它防止矩阵X^TX 不可逆(奇异/退化)
 

2.线性回归中,我们可以使用最小二乘法来求解系数,下列关于最小二乘法说法正确的是?( )
A:只适用于线性模型,不适合逻辑回归模型等其他模型
B:不需要选择学习率
C:当特征数量很多的时候,运算速度会很慢
D:不需要迭代训练

 

3.欠拟合的处理主要有哪些方式:() 
A:增加模型复杂度
B:减小正则化系数

C:增大正则化系数
D:添加新特征
 

4.假如使用一个较复杂的回归模型来拟合样本数据,使用 Ridge回归,调试正则化参数,来降低模型复杂度,若正则化系数较大时,关于偏差(bias)和方差(variance),下列说法正确的是?( )
选项:
A:偏差减小
B:偏差增大
C:方差减小

D:方差增大

(三)判断题
 

1.如果两个变量相关,那么它们一定是线性关系。 
答案: 【错误】

2.随机梯度下降,每次迭代时候,使用一个样本。
答案: 【正确】

3.L2正则化往往用于防止过拟合,而L1正则化往往用于特征选择。 
答案: 【正确】

4.过拟合的处理可以通过减小正则化系数。
答案: 【错误】

相关文章:

机器学习课后习题 --回归

(一)单选题 1.以下()组变量之间存在线性回归关系? A:学生的性别与他的成绩 B:儿子的身高与父亲的身高 C:正方形的边长与面积D: 正三角形的边长与周长 2.回归问题和分类问题的区别是? A:回归问题有标签,分类问题…...

【golang】15、cobra cli 命令行库

Cobra 是 golang 最流行的命令行库,文档见 一、脚手架 mkdir pt && cd pt && go mod init cobra-cli init # 在项目下运行即可生成脚手架# tree . ├── LICENSE ├── cmd # 生成了cmd目录 │ └── root.go # 生成了root.go, 其中定义了ro…...

黑马 大事件项目 笔记

学习视频:黑马 Vue23 课程 后台数据管理系统 - 项目架构设计 在线演示:https://fe-bigevent-web.itheima.net/login 接口文档: https://apifox.com/apidoc/shared-26c67aee-0233-4d23-aab7-08448fdf95ff/api-93850835 接口根路径: http:/…...

C#2010 .NET4 解析 json 字符串

下载Newtonsoft.Json.dll using System; using System.Collections.Generic; using System.Linq; using System.Text;using Newtonsoft.Json; using Newtonsoft.Json.Linq; using System; namespace ConsoleApplication1 {class Program{static void Main(string[] args){strin…...

flutter Could not get unknown property ‘ndkVersion’

使用的 flutter 版本为 3.7.2 ,编译运行 如下 Could not get unknown property ‘ndkVersion’ for object of type com.android.build.gradle.internal.dsl.BaseAppModuleExtension 解决方法是 在flutter-3.7.2\packages\flutter_tools\gradle\flutter.gradle配置…...

WebSocket--技术文档--架构体系--《WebSocket实现原理以及关键组件》

WebSocket产生背景 简单的说,WebSocket协议之前,双工通信是通过多个http链接来实现,这导致了效率低下。WebSocket解决了这个问题。下面是标准RFC6455中的产生背景概述。 长久以来, 创建实现客户端和用户端之间双工通讯的web app都会造成HTT…...

LeetCode-45-跳跃游戏Ⅱ-贪心算法

题目描述&#xff1a; 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 < j < nums[i] i j < n 返回到…...

商品详情接口使用 API 调用获取商品数据的完整方案

在电子商务应用程序中&#xff0c;商品详情接口是不可或缺的一部分。它用于从电商平台或自己的数据库中获取商品数据&#xff0c;并将其提供给应用程序的其他部分使用。本文将详细介绍如何设计一个完整的商品详情接口方案&#xff0c;其中包括使用 API 调用来获取商品数据的过程…...

vue+element-ui el-table组件二次封装实现虚拟滚动,解决数据量大渲染DOM过多而卡顿问题

一、此功能已集成到TTable组件中 二、最终效果 三、需求 某些页面不做分页时&#xff0c;当数据过多&#xff0c;会导致页面卡顿&#xff0c;甚至卡死 四、虚拟滚动 一、固定一个可视区域的大小并且其大小是不变的&#xff0c;那么要做到性能最大化就需要尽量少地渲染 DOM 元素…...

5.1 树和二叉树的定义

思维导图&#xff1a; 问题 为什么有树和二叉树&#xff1f; "树" 和 "二叉树" 都是数据结构中常用的结构&#xff0c;它们分别有其独特的应用和优点。我们可以从它们的定义和特性中理解为什么它们都存在。 1. **树 (Tree)&#xff1a;** - **定义**:…...

Java单元测试及常用语句 | 京东物流技术团队

1 前言 编写Java单元测试用例&#xff0c;即把一段复杂的代码拆解成一系列简单的单元测试用例&#xff0c;并且无需启动服务&#xff0c;在短时间内测试代码中的处理逻辑。写好Java单元测试用例&#xff0c;其实就是把“复杂问题简单化&#xff0c;建单问题深入化“。在编写的…...

详解Vue中的render: h => h(App)

声明:只是记录&#xff0c;会有错误&#xff0c;谨慎阅读 我们用脚手架初始化工程的时候&#xff0c;main.js的代码如下 import Vue from vue import App from ./App.vueVue.config.productionTip falsenew Vue({// 把app组件放入容器中render: h > h(App), }).$mount(#ap…...

归并排序的详解!

本文旨在讲解归并排序的实现&#xff08;递归及非递归&#xff09;搬好小板凳&#xff0c;干货来了&#xff01; 前序&#xff1a; 在介绍归并排序之前&#xff0c;需要给大家介绍的是什么是归并&#xff0c;归并操作&#xff0c;也叫归并算法&#xff0c;指的是将两个顺序序列…...

排盘程序算法探寻举例(陆先生八字)

算法实现&#xff1a; 1.庚生未月&#xff0c;燥土不能生金&#xff0c;日支申金为日主墙根&#xff0c;月干辛金比劫透出傍身&#xff0c;月干强。年干甲木自做寅木强根&#xff0c;又得月支乙木中气&#xff0c;甲木强旺有力&#xff0c;时干丙火七杀得未土余气&#xff0c;…...

考研408 | 【操作系统】终章

I/O设备的基本概念和分类 I/O设备&#xff1a; I/O设备的分类 1.按使用特性&#xff1a; 2.按传输速率分类&#xff1a; 3.按信息交换的单位分类&#xff1a; 总结&#xff1a; I/O控制器 I/O设备的机械部件&#xff1a; I/O设备的电子部件&#xff08;I/O控制器&#…...

亚马逊云科技生成式AI技术辅助教学领域,近实时智能应答2D数字人搭建

早在大语言模型如GPT-3.5等的兴起和被日渐广泛的采用之前&#xff0c;教育行业已经在AI辅助教学领域有过各种各样的尝试。在教育行业&#xff0c;人工智能技术的采用帮助教育行业更好地实现教学目标&#xff0c;提高教学质量、学习效率、学习体验、学习成果。例如&#xff0c;人…...

Programming abstractions in C阅读笔记:p139-p143

《Programming Abstractions In C》学习第55天&#xff0c;p139-p140&#xff0c;总结如下&#xff1a; 一、技术总结 1.文件I/O操作 文件I/O操作可以分为一下这些步骤&#xff1a; (1)声明文件指针对象。 File *infile;(2)打开文件 fopen()。打开文件的模式有“r”, “w…...

MyBatis-Plus学习笔记

1.MyBatis-Plus简介&#xff1a; MyBatis-Plus是一个MyBatis的增强工具&#xff0c;在MyBatis的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。MyBatis-Plus提供了通用的mapper和service&#xff0c;可以在不编写任何SQL语句的情况下&#xff0c;快速的实现对单…...

linux安装docker全过程

3. 第二步&#xff1a;设置docker的存储库。就两条命令&#xff0c;我们直接执行就好。 ​ sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo ​​ 4. 安装docker engine和docker-compose。 执行命…...

Spring 中存取 Bean 的相关注解

目录 一、五大类注解 1、五大类注解存储Bean对象 1.1Controller(控制器储存) 1.2Service(服务存储) 1.3Repository(仓库存储) 1.4Component(组件存储) 1.5Configuration(配置存储) 2、五大类注解小结 2.1为什么要这么多类注解 2.2 五大类注解之间的关系 二、方法注解 1.方法注…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...