机器学习课后习题 --回归
(一)单选题
1.以下()组变量之间存在线性回归关系?
A:学生的性别与他的成绩
B:儿子的身高与父亲的身高
C:正方形的边长与面积
D: 正三角形的边长与周长
2.回归问题和分类问题的区别是?
A:回归问题有标签,分类问题没有
B:回归问题输出值是离散的,分类问题输出值是连续的
C:回归问题输出值是连续的,分类问题输出值是离散的
D:回归问题与分类问题在输入属性值上要求不同
3.以下说法错误的是?
A:残差是预测值与真实值之间的差值
B:损失函数越小,模型训练得一定越好
C:正则项的目的是为了避免模型过拟合
D:最小二乘法不需要选择学习率
4.哪些算法不需要数据归一化?
A:kNN
B:k-means
C:SVM
D: 决策树
5.以下()些方法不能用于处理欠拟合?
A:增大正则化系数
B:增加新的特征
C:增加模型复杂度
D:对特征进行变换,使用组合特征或高维特征
6.以下哪些方法不能用于处理过拟合?
A:对数据进行清洗
B:增大训练数据的量
C:利用正则化技术
D:增加数据属性的复杂度
7.下列关于线性回归分析中的残差(Residuals)说法正确的是?
选项:
A:残差均值总是为零
B:残差均值总是小于零
C:残差均值总是大于零
D:以上说法都不对
8.为了观察测试 Y 与 X 之间的线性关系,X 是连续变量,使用下列哪种图形比较适合?
选项:
A:散点图
B:柱形图
C:直方图
D:以上都不对
9.假如你在训练一个线性回归模型,则:1. 如果数据量较少,容易发生过拟合。2. 如果假设空间较小,容易发生过拟合。关于这两句话,下列说法正确的是?
选项:
A:1 和 2 都错误
B:1 正确,2 错误
C:1 错误,2 正确
D:1 和 2 都正确
10.关于特征选择,下列对 Ridge 回归和 Lasso 回归说法正确的是?
选项:
A:Ridge 回归适用于特征选择
B:Lasso 回归适用于特征选择
C:两个都适用于特征选择
D:以上说法都不对
11.构建一个最简单的线性回归模型需要几个系数(只有一个特征)?
选项:
A:1 个
B:2 个
C:3 个
D:4 个
12.向量x=[1,2,3,4,-9,0]的L1范数是多少?
A:1
B:19
C:6
D:根号111
(二)多选题
1.以下哪些是使用数据规范化(特征缩放)的原因?
A:它通过降低梯度下降的每次迭代的计算成本来加速梯度下降
B:它通过减少迭代次数来获得一个好的解,从而加快了梯度下降的速度
C:它不能防止梯度下降陷入局部最优
D:它防止矩阵X^TX 不可逆(奇异/退化)
2.线性回归中,我们可以使用最小二乘法来求解系数,下列关于最小二乘法说法正确的是?( )
A:只适用于线性模型,不适合逻辑回归模型等其他模型
B:不需要选择学习率
C:当特征数量很多的时候,运算速度会很慢
D:不需要迭代训练
3.欠拟合的处理主要有哪些方式:()
A:增加模型复杂度
B:减小正则化系数
C:增大正则化系数
D:添加新特征
4.假如使用一个较复杂的回归模型来拟合样本数据,使用 Ridge回归,调试正则化参数,来降低模型复杂度,若正则化系数较大时,关于偏差(bias)和方差(variance),下列说法正确的是?( )
选项:
A:偏差减小
B:偏差增大
C:方差减小
D:方差增大
(三)判断题
1.如果两个变量相关,那么它们一定是线性关系。
答案: 【错误】
2.随机梯度下降,每次迭代时候,使用一个样本。
答案: 【正确】
3.L2正则化往往用于防止过拟合,而L1正则化往往用于特征选择。
答案: 【正确】
4.过拟合的处理可以通过减小正则化系数。
答案: 【错误】
相关文章:
机器学习课后习题 --回归
(一)单选题 1.以下()组变量之间存在线性回归关系? A:学生的性别与他的成绩 B:儿子的身高与父亲的身高 C:正方形的边长与面积D: 正三角形的边长与周长 2.回归问题和分类问题的区别是? A:回归问题有标签,分类问题…...
【golang】15、cobra cli 命令行库
Cobra 是 golang 最流行的命令行库,文档见 一、脚手架 mkdir pt && cd pt && go mod init cobra-cli init # 在项目下运行即可生成脚手架# tree . ├── LICENSE ├── cmd # 生成了cmd目录 │ └── root.go # 生成了root.go, 其中定义了ro…...
黑马 大事件项目 笔记
学习视频:黑马 Vue23 课程 后台数据管理系统 - 项目架构设计 在线演示:https://fe-bigevent-web.itheima.net/login 接口文档: https://apifox.com/apidoc/shared-26c67aee-0233-4d23-aab7-08448fdf95ff/api-93850835 接口根路径: http:/…...
C#2010 .NET4 解析 json 字符串
下载Newtonsoft.Json.dll using System; using System.Collections.Generic; using System.Linq; using System.Text;using Newtonsoft.Json; using Newtonsoft.Json.Linq; using System; namespace ConsoleApplication1 {class Program{static void Main(string[] args){strin…...
flutter Could not get unknown property ‘ndkVersion’
使用的 flutter 版本为 3.7.2 ,编译运行 如下 Could not get unknown property ‘ndkVersion’ for object of type com.android.build.gradle.internal.dsl.BaseAppModuleExtension 解决方法是 在flutter-3.7.2\packages\flutter_tools\gradle\flutter.gradle配置…...
WebSocket--技术文档--架构体系--《WebSocket实现原理以及关键组件》
WebSocket产生背景 简单的说,WebSocket协议之前,双工通信是通过多个http链接来实现,这导致了效率低下。WebSocket解决了这个问题。下面是标准RFC6455中的产生背景概述。 长久以来, 创建实现客户端和用户端之间双工通讯的web app都会造成HTT…...
LeetCode-45-跳跃游戏Ⅱ-贪心算法
题目描述: 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i j] 处: 0 < j < nums[i] i j < n 返回到…...
商品详情接口使用 API 调用获取商品数据的完整方案
在电子商务应用程序中,商品详情接口是不可或缺的一部分。它用于从电商平台或自己的数据库中获取商品数据,并将其提供给应用程序的其他部分使用。本文将详细介绍如何设计一个完整的商品详情接口方案,其中包括使用 API 调用来获取商品数据的过程…...
vue+element-ui el-table组件二次封装实现虚拟滚动,解决数据量大渲染DOM过多而卡顿问题
一、此功能已集成到TTable组件中 二、最终效果 三、需求 某些页面不做分页时,当数据过多,会导致页面卡顿,甚至卡死 四、虚拟滚动 一、固定一个可视区域的大小并且其大小是不变的,那么要做到性能最大化就需要尽量少地渲染 DOM 元素…...
5.1 树和二叉树的定义
思维导图: 问题 为什么有树和二叉树? "树" 和 "二叉树" 都是数据结构中常用的结构,它们分别有其独特的应用和优点。我们可以从它们的定义和特性中理解为什么它们都存在。 1. **树 (Tree):** - **定义**:…...
Java单元测试及常用语句 | 京东物流技术团队
1 前言 编写Java单元测试用例,即把一段复杂的代码拆解成一系列简单的单元测试用例,并且无需启动服务,在短时间内测试代码中的处理逻辑。写好Java单元测试用例,其实就是把“复杂问题简单化,建单问题深入化“。在编写的…...
详解Vue中的render: h => h(App)
声明:只是记录,会有错误,谨慎阅读 我们用脚手架初始化工程的时候,main.js的代码如下 import Vue from vue import App from ./App.vueVue.config.productionTip falsenew Vue({// 把app组件放入容器中render: h > h(App), }).$mount(#ap…...
归并排序的详解!
本文旨在讲解归并排序的实现(递归及非递归)搬好小板凳,干货来了! 前序: 在介绍归并排序之前,需要给大家介绍的是什么是归并,归并操作,也叫归并算法,指的是将两个顺序序列…...
排盘程序算法探寻举例(陆先生八字)
算法实现: 1.庚生未月,燥土不能生金,日支申金为日主墙根,月干辛金比劫透出傍身,月干强。年干甲木自做寅木强根,又得月支乙木中气,甲木强旺有力,时干丙火七杀得未土余气,…...
考研408 | 【操作系统】终章
I/O设备的基本概念和分类 I/O设备: I/O设备的分类 1.按使用特性: 2.按传输速率分类: 3.按信息交换的单位分类: 总结: I/O控制器 I/O设备的机械部件: I/O设备的电子部件(I/O控制器&#…...
亚马逊云科技生成式AI技术辅助教学领域,近实时智能应答2D数字人搭建
早在大语言模型如GPT-3.5等的兴起和被日渐广泛的采用之前,教育行业已经在AI辅助教学领域有过各种各样的尝试。在教育行业,人工智能技术的采用帮助教育行业更好地实现教学目标,提高教学质量、学习效率、学习体验、学习成果。例如,人…...
Programming abstractions in C阅读笔记:p139-p143
《Programming Abstractions In C》学习第55天,p139-p140,总结如下: 一、技术总结 1.文件I/O操作 文件I/O操作可以分为一下这些步骤: (1)声明文件指针对象。 File *infile;(2)打开文件 fopen()。打开文件的模式有“r”, “w…...
MyBatis-Plus学习笔记
1.MyBatis-Plus简介: MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生。MyBatis-Plus提供了通用的mapper和service,可以在不编写任何SQL语句的情况下,快速的实现对单…...
linux安装docker全过程
3. 第二步:设置docker的存储库。就两条命令,我们直接执行就好。 sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo 4. 安装docker engine和docker-compose。 执行命…...
Spring 中存取 Bean 的相关注解
目录 一、五大类注解 1、五大类注解存储Bean对象 1.1Controller(控制器储存) 1.2Service(服务存储) 1.3Repository(仓库存储) 1.4Component(组件存储) 1.5Configuration(配置存储) 2、五大类注解小结 2.1为什么要这么多类注解 2.2 五大类注解之间的关系 二、方法注解 1.方法注…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
MeshGPT 笔记
[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭!_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...
未授权访问事件频发,我们应当如何应对?
在当下,数据已成为企业和组织的核心资产,是推动业务发展、决策制定以及创新的关键驱动力。然而,未授权访问这一隐匿的安全威胁,正如同高悬的达摩克利斯之剑,时刻威胁着数据的安全,一旦触发,便可…...
【中间件】Web服务、消息队列、缓存与微服务治理:Nginx、Kafka、Redis、Nacos 详解
Nginx 是什么:高性能的HTTP和反向代理Web服务器。怎么用:通过配置文件定义代理规则、负载均衡、静态资源服务等。为什么用:提升Web服务性能、高并发处理、负载均衡和反向代理。优缺点:轻量高效,但动态处理能力较弱&am…...
