当前位置: 首页 > news >正文

MySQL分页查询详解:优化大数据集的LIMIT和OFFSET

最近在工作中,我们遇到了一个需求,甲方要求直接从数据库导出一个业务模块中所有使用中的工单信息。为了实现这一目标,我编写了一条SQL查询语句,并请求DBA协助导出数据。尽管工单数量并不多,只有3000多条,但每个工单都包含了大量的信息。DBA进行了多次导出操作,不幸的是,每次尝试导出都导致了操作平台的卡顿和无响应。

为了克服这一问题,我们决定采用MySQL的分页技术,具体使用了LIMIT和OFFSET关键词,将导出操作拆分成多个批次进行。通常,我们在项目中使用一些开源插件如pagehelper等来实现页面分页,很少自己在sql中编写分页逻辑。但在这次需求中,我们不得不深入了解并使用了MySQL的分页功能。

在本文中,我们将详细探讨MySQL中的LIMITOFFSET关键词,以及如何通过性能优化来处理分页查询,以满足业务需求。

什么是分页查询?

分页查询是一种将大型数据集拆分成可管理块的技术,以便在用户界面中逐页显示。这在Web应用、移动应用和报告生成中非常常见,它有助于提高性能并改善用户体验,因为不需要一次加载全部数据。

分页关键字

LIMIT关键字

LIMIT关键字用于限制返回结果集中的行数。其基本语法如下:

SELECT * FROM 表名 LIMIT 行数;

例如,要从名为mark_info的表中选择最新创建的10个工单的信息,可以执行以下查询:

SELECT * FROM mark_info ORDER BY CREATE_TIME DESC  LIMIT 10;

OFFSET关键字

OFFSET关键字用于指定从结果集的哪一行开始返回数据。通常,它与LIMIT一起使用,以实现分页效果。其语法如下:

SELECT * FROM 表名 LIMIT 行数 OFFSET 偏移量;

或者

SELECT * FROM 表名 LIMIT 行数 , 偏移量;

这两写法效果是一样的。

例如,要从mark_info表中选择选择最新创建的第11到第20个工单的信息,可以执行以下查

SELECT * FROM mark_info ORDER BY CREATE_TIME DESC  LIMIT 10 OFFSET 10;

或者

SELECT * FROM mark_info ORDER BY CREATE_TIME DESC  LIMIT 10 , 10;

分页查询的示例

假设我们有一个名为bus_work_order_operate_info的表,其中存储了大量工单操作记录。我们希望实现一个分页功能,每页显示10个工单操作的信息。以下是如何执行分页查询的示例:

-- 第一页,显示最新的10个工单操作信息
SELECT * FROM bus_work_order_operate_info ORDER BY OPERATE_TIME DESC LIMIT 10;-- 第二页,显示接下来的10个工单操作信息
SELECT * FROM bus_work_order_operate_info ORDER BY OPERATE_TIME DESC LIMIT 10 OFFSET 10;-- 第三页,显示接下来的10个工单操作信息
SELECT * FROM bus_work_order_operate_info ORDER BY OPERATE_TIME DESC LIMIT 10 OFFSET 20;-- 以此类推...

性能优化

我们在很多的实际应用场景中,一般 limit 加上偏移量,加上order by 子句,配合合适的索引,效率通常不错。但是当偏移量非常大的时候,需要跳过大量的数据,这样会有很大的性能问题。以下是一个优化的示例:

未优化sql

SELECT * FROM bus_work_order_operate_info ORDER BY OPERATE_TIME DESC LIMIT 10 OFFSET 5000;

查询分析

_20230902222023.png

优化后sql

select T1.* from bus_work_order_operate_info T1  INNER JOIN (select ID FROM bus_work_order_operate_info ORDER BY OPERATE_TIME DESC LIMIT 10 OFFSET 5000  ) T2 ON T1.ID = T2.ID;

查询分析

_20230902222301.png

通过查询分析对比,优化后的sql扫描的数据行数更少,查询可能会更加高效,所以我们可以考虑用这种方式对大偏移量的limit 进行优化。

总结

MySQL的分页查询是处理大量数据集的常见需求,了解LIMITOFFSET关键字的用法可以帮助您有效地实现分页功能。同时,性能优化也是确保查询高效执行的关键。通过合理配置和结合其他优化策略,您可以轻松应对分页查询的挑战,提供更好的用户体验。

相关文章:

MySQL分页查询详解:优化大数据集的LIMIT和OFFSET

最近在工作中,我们遇到了一个需求,甲方要求直接从数据库导出一个业务模块中所有使用中的工单信息。为了实现这一目标,我编写了一条SQL查询语句,并请求DBA协助导出数据。尽管工单数量并不多,只有3000多条,但…...

解构赋值、函数默认值

暂时性死区,TDZ(Temporal Dead Zone) var x 1 {let x x//此处声明了x,但是没有对x赋值,相当于在赋值之前引用x,所以会造成报错console.log(x)//报错x is not defined,暂时性死区,…...

【已解决】Mybatis 实现 Group By 动态分组查询

🎉工作中遇到这样一个需求场景:实现一个统计查询,要求可以根据用户在前端界面筛选的字段进行动态地分组统计。也就是说,后端在实现分组查询的时候,Group By 的字段是不确定的,可能是一个字段、多个字段或者…...

Android修改默认gradle路径

Android Studio每次新建项目,都会默认在C盘生成并下载gradle相关文件,由于C盘空间有限,没多久C盘就飘红了,于是就需要把gradle相关文件转移到其他盘 1、到C盘找到gradle文件 具体路径一般是:C:\Users\用户\ .gradle …...

原生JS+canvas实现炫酷背景

原生JScanvas实现炫酷背景 可以在需要的背景页使用 <!doctype html> <html> <head> <meta charset"utf-8"> <title>HTML5 Canvas矩阵粒子波浪背景动画特效</title> <style> html,body { height:100%; } body { …...

Linux学习之NAS服务器搭建

NAS是Network Attached Storage的缩写&#xff0c;也就是网络附属存储。可以使用自己已经不怎么使用的笔记本搭建一台NAS服务器。 fdisk -l可以看一下各个磁盘的状态。 可以看到有sda、sdb、sdc和sdd等四块硬盘。 lvs、vgs和pvs结合起来看&#xff0c;sdb和sdc没有被使用。 …...

分享码云上8个宝藏又有价值的开源图片编辑器

如果你需要高效地处理图片&#xff0c;那么这8款实用工具是可以尝试的&#xff01; 它们能够进行一键抠图、放大、拼接、转矢量图、图标自动生成以及等操作&#xff0c;让你的工作效率飞升&#xff01; 在Gitee这个最有价值的开源项目计划是Gitee综合评定出的优秀开源项目的展示…...

TCP Header都有啥?

分析&回答 源端口号&#xff08;Source Port&#xff09; &#xff1a;16位&#xff0c;标识主机上发起传送的应用程序&#xff1b; 目的端口&#xff08;Destonation Port&#xff09; &#xff1a;16位&#xff0c;标识主机上传送要到达的应用程序。 源端&#xff0c;目…...

无涯教程-Android - AutoCompleteTextView函数

AutoCompleteTextView是一个类似于EditText的视图&#xff0c;只是它在用户键入时自动显示补充数据。 AutoCompleteTextView - 属性 以下是与AutoCompleteTextView控件相关的重要属性。您可以查看Android官方文档以获取属性的完整列表以及可以在运行时更改这些属性的相关方法。…...

【Docker】 07-安装ElasticSearch、Kibana

安装ElasticSearch 1、拉取镜像 docker pull elasticsearch:6.4.2 2、运行 docker run -p 9200:9200 -p 9300:9300 --name es -d elasticsearch:6.4.2 启动会报错&#xff0c;按照下面流程修改 3、在宿主机中&#xff0c;修改配置sysctl.conf vim /etc/sysctl.conf 加入如下配…...

【数据结构篇】线性表1 --- 顺序表、链表 (万字详解!!)

前言&#xff1a;这篇博客我们重点讲 线性表中的顺序表、链表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#xff1a;顺序表、链表、栈、队列... 线性表在逻辑上是…...

C语言每日一练--Day(17)

本专栏为c语言练习专栏&#xff0c;适合刚刚学完c语言的初学者。本专栏每天会不定时更新&#xff0c;通过每天练习&#xff0c;进一步对c语言的重难点知识进行更深入的学习。 今日练习题关键字&#xff1a;数对 截取字符串 &#x1f493;博主csdn个人主页&#xff1a;小小unico…...

8月琐碎但值得的事情

8月份结束了&#xff0c;最近心态比较好&#xff0c;慢点就慢点&#xff0c;没有那么着急了&#xff0c;可能是因为着急也没啥办法&#xff0c; 8月是比较开心的一个月&#xff0c;可能是做的事情更有盼头了&#xff0c;可能是看了喜欢的书&#xff0c;可能是我变瘦了&#xff…...

苹果Mac系统如何优化流畅的运行?提高运行速度

Mac系统的稳定性和流畅性一直备受大家称赞&#xff0c;这也是大多数人选择Mac的原因&#xff0c;尽管如此&#xff0c;我们仍不时地对Mac进行优化、调整&#xff0c;以使其比以前更快、更流畅地运行。以下是小编分享给各位的Mac优化方法&#xff0c;记得保存哦~ 一、释放被过度…...

Python 类和对象

类的创建 Python语言中&#xff0c;使用class关键字来创建类&#xff0c;其创建方式如下&#xff1a; class ClassName(bases):# class documentation string 类文档字符串&#xff0c;对类进行解释说明class_suiteclass是关键字&#xff0c;bases是要继承的父类&#xff0c;…...

VC++使用Microsoft Speech SDK进行文字TTS朗读

Microsoft Speech SDK下载地址 https://www.microsoft.com/en-us/download/details.aspx?id10121 需要msttss22L.exe、SpeechSDK51.exe、SpeechSDK51LangPack.exe三个&#xff0c;下载后全部安装 使用VS2005建立一个win32控制台项目 朗读"hello word"、中文“你好”…...

FFmpeg4.3.1+h264在windows下编译与VS2017项目集成

前言 在Android音视频开发中&#xff0c;网上知识点过于零碎&#xff0c;自学起来难度非常大&#xff0c;不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》&#xff0c;结合我自己的工作学习经历&#xff0c;我准备写一个音视频系列blog。本文是音视频系…...

mapboxGL3新特性介绍

概述 8月7日&#xff0c;mapboxGL发布了3版本的更新&#xff0c;本文带大家一起来看看mapboxGL3有哪些新的特性。 新特新 如上图所示&#xff0c;是mapboxGL官网关于新版的介绍&#xff0c;大致翻译如下&#xff1a; 增强了web渲染的质量、便捷程度以及开发人员体验&#xff…...

类ChatGPT大模型LLaMA及其微调模型

1.LLaMA LLaMA的模型架构:RMSNorm/SwiGLU/RoPE/Transfor mer/1-1.4T tokens 1.1对transformer子层的输入归一化 对每个transformer子层的输入使用RMSNorm进行归一化&#xff0c;计算如下&#xff1a; 1.2使用SwiGLU替换ReLU 【Relu激活函数】Relu(x) max(0,x) 。 【GLU激…...

50个简洁的提示提高代码可读性和效率(0-10)

这篇文章整理了50个简洁的提示&#xff0c;可以提高您的代码可读性和效率。这些提示来自个人项目、彻底的代码审查和与资深开发人员的启发性讨论。 无论您是新手还是经验丰富的开发人员&#xff0c;这篇文章都应该能够帮助您学到一些东西。 这个列表包括常见的Python模式、核…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

GraphRAG优化新思路-开源的ROGRAG框架

目前的如微软开源的GraphRAG的工作流程都较为复杂&#xff0c;难以孤立地评估各个组件的贡献&#xff0c;传统的检索方法在处理复杂推理任务时可能不够有效&#xff0c;特别是在需要理解实体间关系或多跳知识的情况下。先说结论&#xff0c;看完后感觉这个框架性能上不会比Grap…...

使用python进行图像处理—图像滤波(5)

图像滤波是图像处理中最基本和最重要的操作之一。它的目的是在空间域上修改图像的像素值&#xff0c;以达到平滑&#xff08;去噪&#xff09;、锐化、边缘检测等效果。滤波通常通过卷积操作实现。 5.1卷积(Convolution)原理 卷积是滤波的核心。它是一种数学运算&#xff0c;…...