当前位置: 首页 > news >正文

如何利用开源工具搭建AI大模型底座

开源社区是技术发展的一个重要部分,对于AI大模型来说,也是如此。

我们在这篇文章中来尝试通过开源工具来构建AI大模型的底座,涉及到的技术包括:

  • Langchain
  • OpenAI
  • Flowise
  • LocalAI
  • Llama

使用Langchain构建第一个对话应用

如果你使用过ChatGPT,你应该知道它是一个基于大语言模型的应用程序,可以与人类进行多轮对话。

为了让大语言模型能够与人类友好的多轮对话,我们需要引入两个额外组件:

  1. ConversationBufferMemory,它帮助LLM记录我们的对话过程。
  2. ConversationChain,它帮我们管理整个绘画过程,通过调用BufferMemory中的对话信息,它可以让无状态的LLM了解我们的对话上下文。

我们可以使用下面的代码来通过Langchain实现一个简易版的ChatGPT:

from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemoryimport os
os.environ["OPENAI_API_KEY"] = '...'llm = OpenAI(temperature=0)
mem = ConversationBufferMemory()# Here it is by default set to "AI"
conversation = ConversationChain(llm=llm, verbose=True, memory=mem)conversation.predict(input="Hi there!")

通过Flowise零代码搭建LLM应用平台

Flowise官网:https://flowiseai.com/

Flowise is a low-code/no-code drag & drop tool with the aim to make it easy for people to visualize and build LLM apps.

我们可以在Windows/Mac/Linux中安装Flowise,以Linux为例,安装Flowise步骤如下:

  1. 安装NodeJS
  2. 安装Docker和Docker compose
  3. 运行下面的脚本安装和启动Flowise
    npm install -g flowise
    npx flowise start

我们可以通过http://{server}:3000 来访问Flowise,截图如下:
在这里插入图片描述

通过Flowise Portal,我们可以创建新的Chatflow,在打开的flow页面,我们可以通过拖拽的方式,来构建flow:
在这里插入图片描述
例如,我们上面提到的通过Langchain来构建简易ChatGPT应用,创建出来的flow如下截图:

在这里插入图片描述

我们可以通过页面右上角的对话按钮,对我们的flow进行测试:
在这里插入图片描述

在LLM应用中引入领域知识库

在实际应用中,我们可以为模型增加外部记忆,在提示词中引入一些领域知识,来帮助模型提升回答质量。

这种方式的具体步骤如下:

  1. 对输入文档进行切片,生成语义向量(Embedding),存入向量数据库作为外部记忆。
  2. 根据所提的问题,检索向量数据库,获取文档中的内容片段。
  3. 把文档片段和所提的问题一并组织成提示词,提交给大语言模型,让其理解文档内容,针对问题生成恰当的答案。

为了实现这个应用,我们需要引入以下组件:

  1. Docx File Loader,负责加载外部输入的文档。
  2. Recursive Character Text Splitter,用来对文档内容进行断句切片。
  3. OpenAI Embeddings,负责将断句后的内容切片映射成高维Embedding。
  4. In-Memory Vector Store,负责将Embedding存入数据库中,供LLM作为外部记忆。
  5. Conversational Retrieval QA Chain,负责根据问题,获得外部知识,在LLM思考生成答案后返回给用户。

使用Flowise构建上述的应用,截图如下:

在这里插入图片描述

使用LocalAI做可用LLM应用

我们前面做的LLM应用都依赖于OpenAI API,会有一些风险,我们可以考虑构建本地大模型。

我们可以基于LocalAI开源应用来实现这一点。

下面是搭建过程:

$ git clone https://github.com/go-skynet/LocalAI
$ cd LocalAI

我们使用一个小模型进行部署。

$ wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
$ cp -rf prompt-templates/ggml-gpt4all-j.tmpl models/

然后我们可以加载models并将其封装为API服务。

$ docker-compose pull
$ docker-compose up -d

接下来是获取model列表进行验证。

$ curl http://localhost:8080/v1/models
{"object":"list","data":[{"id":"ggml-gpt4all-j","object":"model"}]}

这样我们可以修改Flowise,使用本地模型代替OpenAI。
在这里插入图片描述

使用Llama2构建LLM应用

我们还可以使用Llama2来构建LLM应用,这在应用许可上更加友好。

我们可以下载Llama2模型文件。

$ wget -c "https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_0.bin" ./models

然后重启LocalAI,查看Llama2是否被正常部署。

$ curl -v  http://localhost:8080/v1/models
{"object":"list","data":[{"id":"llama-2-7b-chat.ggmlv3.q4_0.bin","object":"model"}]}

我们可以返回Flowise flow,将模型名字修改为llama-2-7b-chat.ggmlv3.q4_0.bin,这样我们就可以使用Llama2来回答我们的问题。

再进一步,我们还可以尝试使用AutoGPT或者AgentGPT来构建更加负责的LLM应用,帮助我们完成更有挑战性的事情。

相关文章:

如何利用开源工具搭建AI大模型底座

开源社区是技术发展的一个重要部分,对于AI大模型来说,也是如此。 我们在这篇文章中来尝试通过开源工具来构建AI大模型的底座,涉及到的技术包括: LangchainOpenAIFlowiseLocalAILlama 使用Langchain构建第一个对话应用 如果你使…...

算法笔记:二叉树

1 基本二叉树 二叉树是一种树形数据结构,其中每个节点最多有两个子节点,通常称为“左子节点”和“右子节点”。 二叉树的根是唯一没有父节点的节点,而所有其他节点都有一个父节点和零个或两个子节点。 1.1 基础术语 节点(Node&…...

1. 安装Zookeeper

​ 1.下载 点击下载Zookeeper 单机版安装 安装Zookeeper前需要先安装jdk上传安装包rz解压安装包:tar -zxvf apache-zookeeper-3.6.0-bin.tar.gz -C /opt/app/zookeeper zookeeper目录结构:a. bin: 放置运行脚本和工具脚本b. conf: zookeeper 默认读取配置的目录,里面会有…...

warning: ignoring unsupported character ‘问题修复

rivers/net/wireless/aic8800/Kconfig:1⚠️ ignoring unsupported character 问题修复: 有一次编译内核,看到有下面的warning: jianjian:~/share/kylin/rk-kernel-5.10$ make menuconfigUPD scripts/kconfig/mconf-cfgHOSTCC scripts/…...

【Ant Design】Form.Item创建自定义表单

一、概述 Antd是一个非常强大的UI组件库,里面的Form表单组件也基本能满足我们大多数场景。但是也有需要自定义表单的场景。 Vue2里我们使用v-model,结合子组件的model属性,来实现自定义组件的双向绑定。 Vue3里我们使用v-model,…...

Vision Transformer(VIT 网络架构)

论文下载链接:https://arxiv.org/abs/2010.11929 文章目录 引言1. VIT与传统CNN的比较2. 为什么需要Transformer在图像任务中? 1. 深入Transformer1.1 Transformer的起源:NLP领域的突破1.2 Transformer的基本组成1.2.1 自注意机制 (Self-Atte…...

数学建模--蒙特卡洛模型的Python实现

目录 1.算法思想简介 2.算法应用1:问题一阐述 3.算法应用1:问题一解决 4.算法应用2:问题二阐述 5.算法应用2:问题二解决 1.算法思想简介 #蒙特卡洛算法思想 """ 蒙特卡洛方法的理论其实很类似于概率论中一个比较重…...

MySQL访问和配置

目录 1.使用MySQL自带的客户端工具访问 2.使用DOS访问(命令行窗口WinR → cmd) 3.连接工具(SQLyog或其它) MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 1.使用MySQL自…...

note_前端框架Vue的安装和简单入门(Windows 11)

1. Vue安装 (1) 下载安装node.js和npm # 下载msi安装包 https://nodejs.org/en# 点击安装包,按提示安装 # 默认安装nodejs, npm, 在线文档; PATH配置# 确认安装是否成功,在dos中输入 node -v # 验证nodejs是否安装成功 npm -v # 验证nodejs包管…...

SILERGY(矽力杰)功率电子开关 SY6280AAC

SILERGY(矽力杰)功率电子开关 SY6280AAC Low Loss Power Distribution Switch SOT-5 Pacakge 2.4V ~ 5.5V (<6V) 0.6W Max. Current 2A Reverse blocking (no body diode) Programmable current limit ( Ilimits(A) 6800 / Rset(ohm). ) Application Circuit (Reco…...

mysql char 和varchar的区别?

char 和varchar的区别 1、 char 一定会使用指定的空间&#xff0c;varchar是根据数据来定空间 2、 char的插入数据效率理论上比varchar高&#xff1a;varchar是需要通过后面的记录数来计算 使用哪一种类型&#xff1f; 如果确定数据一定是占指定长度&#xff0c;那么使用char类…...

HttpClient默认重试机制

分析&回答 只有发生IOExecetion时才会发生重试InterruptedIOException、UnknownHostException、ConnectException、SSLException&#xff0c;发生这4中异常不重试get方法可以重试3次&#xff0c;post方法在socket对应的输出流没有被write并flush成功时可以重试3次。读/写超…...

论文于祥读及复现——《Multi-level Map Construction for Dynamic Scenes》

论文祥读之——动态场景的多层次地图构建 0. 出发点&#xff08;暨摘要&#xff09;1. 引言2. 相关工作3.主要内容概括3.1 几何地图的构建3.1.1 密集点云地图和八叉图的构建3.1.2 平面地图的构建 3.2 对象地图的构建3.2.1 对象参数化和数据关联3.2.2 对象的更新与优化 4. 实验4…...

IDEA 报 Cannot resolve symbol ‘HttpServletResponse‘ 解决

springboot2版本换成springboot3之后&#xff0c;代码这里突然报红了&#xff0c; 首先要淡定&#xff0c;把原先Import的引入删掉&#xff0c;重新引入试试呢&#xff0c;是不是很简单哈哈。 原来&#xff0c;springboot3的路径是&#xff1a; import jakarta.servlet.http…...

linux-samba-window登不上

登不上查了很久发现是防火墙导致的 sudo firewall-cmd --list-all //查看所有的防火墙信息sudo firewall-cmd --permanent --zonepublic --add-servicesamba //service里添加sambafirewall-cmd --reload //重启 便可以登录了,小问题...

Java Web3J :使用web3j监听、查询、订阅智能合约的事件

前面有文章写如何使用Docker-compose方式部署blockscout浏览器+charts图表,区块链浏览器已经部署成功了,同时我们在链上增加了治理投票流程,如何实时的把治理事件快速同步到浏览器呢?这时就想到了Web3J来监听智能合约的事件,来达到同步事件的效果 目录 Web3J简介功能简介m…...

C语言入门 Day_13 二维数组

目录 前言&#xff1a; 1.字符串 2.创建二维数组 3.使用二维数组 4.易错点 5.思维导图 前言&#xff1a; 我们学习了字符类型char&#xff0c;我们可以用char来表示一个大写或者小写的字母&#xff0c;但真实应用中我们往往使用的是多个字符组成的一个单词或者句子。 …...

通过HFS低成本搭建NAS,并内网穿透实现公网访问

文章目录 前言1.下载安装cpolar1.1 设置HFS访客1.2 虚拟文件系统 2. 使用cpolar建立一条内网穿透数据隧道2.1 保留隧道2.2 隧道名称2.3 成功使用cpolar创建二级子域名访问本地hfs 总结 前言 云存储作为一个新概念&#xff0c;在前些年炒的火热&#xff0c;虽然伴随一系列黑天鹅…...

【SpringMVC】工作流程及入门案例

目录 前言 回顾MVC三层架构 1. SpringMVC简介 …...

【JVM】垃圾收集算法

文章目录 分代收集理论标记-清除算法标记-复制算法标记-整理算法 分代收集理论 当前商业虚拟机的垃圾收集器&#xff0c;大多数都遵循了“分代收集”&#xff08;Generational Collection&#xff09;[1]的理论进 行设计&#xff0c;分代收集名为理论&#xff0c;实质是一套符…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...