当前位置: 首页 > news >正文

如何利用开源工具搭建AI大模型底座

开源社区是技术发展的一个重要部分,对于AI大模型来说,也是如此。

我们在这篇文章中来尝试通过开源工具来构建AI大模型的底座,涉及到的技术包括:

  • Langchain
  • OpenAI
  • Flowise
  • LocalAI
  • Llama

使用Langchain构建第一个对话应用

如果你使用过ChatGPT,你应该知道它是一个基于大语言模型的应用程序,可以与人类进行多轮对话。

为了让大语言模型能够与人类友好的多轮对话,我们需要引入两个额外组件:

  1. ConversationBufferMemory,它帮助LLM记录我们的对话过程。
  2. ConversationChain,它帮我们管理整个绘画过程,通过调用BufferMemory中的对话信息,它可以让无状态的LLM了解我们的对话上下文。

我们可以使用下面的代码来通过Langchain实现一个简易版的ChatGPT:

from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemoryimport os
os.environ["OPENAI_API_KEY"] = '...'llm = OpenAI(temperature=0)
mem = ConversationBufferMemory()# Here it is by default set to "AI"
conversation = ConversationChain(llm=llm, verbose=True, memory=mem)conversation.predict(input="Hi there!")

通过Flowise零代码搭建LLM应用平台

Flowise官网:https://flowiseai.com/

Flowise is a low-code/no-code drag & drop tool with the aim to make it easy for people to visualize and build LLM apps.

我们可以在Windows/Mac/Linux中安装Flowise,以Linux为例,安装Flowise步骤如下:

  1. 安装NodeJS
  2. 安装Docker和Docker compose
  3. 运行下面的脚本安装和启动Flowise
    npm install -g flowise
    npx flowise start

我们可以通过http://{server}:3000 来访问Flowise,截图如下:
在这里插入图片描述

通过Flowise Portal,我们可以创建新的Chatflow,在打开的flow页面,我们可以通过拖拽的方式,来构建flow:
在这里插入图片描述
例如,我们上面提到的通过Langchain来构建简易ChatGPT应用,创建出来的flow如下截图:

在这里插入图片描述

我们可以通过页面右上角的对话按钮,对我们的flow进行测试:
在这里插入图片描述

在LLM应用中引入领域知识库

在实际应用中,我们可以为模型增加外部记忆,在提示词中引入一些领域知识,来帮助模型提升回答质量。

这种方式的具体步骤如下:

  1. 对输入文档进行切片,生成语义向量(Embedding),存入向量数据库作为外部记忆。
  2. 根据所提的问题,检索向量数据库,获取文档中的内容片段。
  3. 把文档片段和所提的问题一并组织成提示词,提交给大语言模型,让其理解文档内容,针对问题生成恰当的答案。

为了实现这个应用,我们需要引入以下组件:

  1. Docx File Loader,负责加载外部输入的文档。
  2. Recursive Character Text Splitter,用来对文档内容进行断句切片。
  3. OpenAI Embeddings,负责将断句后的内容切片映射成高维Embedding。
  4. In-Memory Vector Store,负责将Embedding存入数据库中,供LLM作为外部记忆。
  5. Conversational Retrieval QA Chain,负责根据问题,获得外部知识,在LLM思考生成答案后返回给用户。

使用Flowise构建上述的应用,截图如下:

在这里插入图片描述

使用LocalAI做可用LLM应用

我们前面做的LLM应用都依赖于OpenAI API,会有一些风险,我们可以考虑构建本地大模型。

我们可以基于LocalAI开源应用来实现这一点。

下面是搭建过程:

$ git clone https://github.com/go-skynet/LocalAI
$ cd LocalAI

我们使用一个小模型进行部署。

$ wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
$ cp -rf prompt-templates/ggml-gpt4all-j.tmpl models/

然后我们可以加载models并将其封装为API服务。

$ docker-compose pull
$ docker-compose up -d

接下来是获取model列表进行验证。

$ curl http://localhost:8080/v1/models
{"object":"list","data":[{"id":"ggml-gpt4all-j","object":"model"}]}

这样我们可以修改Flowise,使用本地模型代替OpenAI。
在这里插入图片描述

使用Llama2构建LLM应用

我们还可以使用Llama2来构建LLM应用,这在应用许可上更加友好。

我们可以下载Llama2模型文件。

$ wget -c "https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_0.bin" ./models

然后重启LocalAI,查看Llama2是否被正常部署。

$ curl -v  http://localhost:8080/v1/models
{"object":"list","data":[{"id":"llama-2-7b-chat.ggmlv3.q4_0.bin","object":"model"}]}

我们可以返回Flowise flow,将模型名字修改为llama-2-7b-chat.ggmlv3.q4_0.bin,这样我们就可以使用Llama2来回答我们的问题。

再进一步,我们还可以尝试使用AutoGPT或者AgentGPT来构建更加负责的LLM应用,帮助我们完成更有挑战性的事情。

相关文章:

如何利用开源工具搭建AI大模型底座

开源社区是技术发展的一个重要部分,对于AI大模型来说,也是如此。 我们在这篇文章中来尝试通过开源工具来构建AI大模型的底座,涉及到的技术包括: LangchainOpenAIFlowiseLocalAILlama 使用Langchain构建第一个对话应用 如果你使…...

算法笔记:二叉树

1 基本二叉树 二叉树是一种树形数据结构,其中每个节点最多有两个子节点,通常称为“左子节点”和“右子节点”。 二叉树的根是唯一没有父节点的节点,而所有其他节点都有一个父节点和零个或两个子节点。 1.1 基础术语 节点(Node&…...

1. 安装Zookeeper

​ 1.下载 点击下载Zookeeper 单机版安装 安装Zookeeper前需要先安装jdk上传安装包rz解压安装包:tar -zxvf apache-zookeeper-3.6.0-bin.tar.gz -C /opt/app/zookeeper zookeeper目录结构:a. bin: 放置运行脚本和工具脚本b. conf: zookeeper 默认读取配置的目录,里面会有…...

warning: ignoring unsupported character ‘问题修复

rivers/net/wireless/aic8800/Kconfig:1⚠️ ignoring unsupported character 问题修复: 有一次编译内核,看到有下面的warning: jianjian:~/share/kylin/rk-kernel-5.10$ make menuconfigUPD scripts/kconfig/mconf-cfgHOSTCC scripts/…...

【Ant Design】Form.Item创建自定义表单

一、概述 Antd是一个非常强大的UI组件库,里面的Form表单组件也基本能满足我们大多数场景。但是也有需要自定义表单的场景。 Vue2里我们使用v-model,结合子组件的model属性,来实现自定义组件的双向绑定。 Vue3里我们使用v-model,…...

Vision Transformer(VIT 网络架构)

论文下载链接:https://arxiv.org/abs/2010.11929 文章目录 引言1. VIT与传统CNN的比较2. 为什么需要Transformer在图像任务中? 1. 深入Transformer1.1 Transformer的起源:NLP领域的突破1.2 Transformer的基本组成1.2.1 自注意机制 (Self-Atte…...

数学建模--蒙特卡洛模型的Python实现

目录 1.算法思想简介 2.算法应用1:问题一阐述 3.算法应用1:问题一解决 4.算法应用2:问题二阐述 5.算法应用2:问题二解决 1.算法思想简介 #蒙特卡洛算法思想 """ 蒙特卡洛方法的理论其实很类似于概率论中一个比较重…...

MySQL访问和配置

目录 1.使用MySQL自带的客户端工具访问 2.使用DOS访问(命令行窗口WinR → cmd) 3.连接工具(SQLyog或其它) MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 1.使用MySQL自…...

note_前端框架Vue的安装和简单入门(Windows 11)

1. Vue安装 (1) 下载安装node.js和npm # 下载msi安装包 https://nodejs.org/en# 点击安装包,按提示安装 # 默认安装nodejs, npm, 在线文档; PATH配置# 确认安装是否成功,在dos中输入 node -v # 验证nodejs是否安装成功 npm -v # 验证nodejs包管…...

SILERGY(矽力杰)功率电子开关 SY6280AAC

SILERGY(矽力杰)功率电子开关 SY6280AAC Low Loss Power Distribution Switch SOT-5 Pacakge 2.4V ~ 5.5V (<6V) 0.6W Max. Current 2A Reverse blocking (no body diode) Programmable current limit ( Ilimits(A) 6800 / Rset(ohm). ) Application Circuit (Reco…...

mysql char 和varchar的区别?

char 和varchar的区别 1、 char 一定会使用指定的空间&#xff0c;varchar是根据数据来定空间 2、 char的插入数据效率理论上比varchar高&#xff1a;varchar是需要通过后面的记录数来计算 使用哪一种类型&#xff1f; 如果确定数据一定是占指定长度&#xff0c;那么使用char类…...

HttpClient默认重试机制

分析&回答 只有发生IOExecetion时才会发生重试InterruptedIOException、UnknownHostException、ConnectException、SSLException&#xff0c;发生这4中异常不重试get方法可以重试3次&#xff0c;post方法在socket对应的输出流没有被write并flush成功时可以重试3次。读/写超…...

论文于祥读及复现——《Multi-level Map Construction for Dynamic Scenes》

论文祥读之——动态场景的多层次地图构建 0. 出发点&#xff08;暨摘要&#xff09;1. 引言2. 相关工作3.主要内容概括3.1 几何地图的构建3.1.1 密集点云地图和八叉图的构建3.1.2 平面地图的构建 3.2 对象地图的构建3.2.1 对象参数化和数据关联3.2.2 对象的更新与优化 4. 实验4…...

IDEA 报 Cannot resolve symbol ‘HttpServletResponse‘ 解决

springboot2版本换成springboot3之后&#xff0c;代码这里突然报红了&#xff0c; 首先要淡定&#xff0c;把原先Import的引入删掉&#xff0c;重新引入试试呢&#xff0c;是不是很简单哈哈。 原来&#xff0c;springboot3的路径是&#xff1a; import jakarta.servlet.http…...

linux-samba-window登不上

登不上查了很久发现是防火墙导致的 sudo firewall-cmd --list-all //查看所有的防火墙信息sudo firewall-cmd --permanent --zonepublic --add-servicesamba //service里添加sambafirewall-cmd --reload //重启 便可以登录了,小问题...

Java Web3J :使用web3j监听、查询、订阅智能合约的事件

前面有文章写如何使用Docker-compose方式部署blockscout浏览器+charts图表,区块链浏览器已经部署成功了,同时我们在链上增加了治理投票流程,如何实时的把治理事件快速同步到浏览器呢?这时就想到了Web3J来监听智能合约的事件,来达到同步事件的效果 目录 Web3J简介功能简介m…...

C语言入门 Day_13 二维数组

目录 前言&#xff1a; 1.字符串 2.创建二维数组 3.使用二维数组 4.易错点 5.思维导图 前言&#xff1a; 我们学习了字符类型char&#xff0c;我们可以用char来表示一个大写或者小写的字母&#xff0c;但真实应用中我们往往使用的是多个字符组成的一个单词或者句子。 …...

通过HFS低成本搭建NAS,并内网穿透实现公网访问

文章目录 前言1.下载安装cpolar1.1 设置HFS访客1.2 虚拟文件系统 2. 使用cpolar建立一条内网穿透数据隧道2.1 保留隧道2.2 隧道名称2.3 成功使用cpolar创建二级子域名访问本地hfs 总结 前言 云存储作为一个新概念&#xff0c;在前些年炒的火热&#xff0c;虽然伴随一系列黑天鹅…...

【SpringMVC】工作流程及入门案例

目录 前言 回顾MVC三层架构 1. SpringMVC简介 …...

【JVM】垃圾收集算法

文章目录 分代收集理论标记-清除算法标记-复制算法标记-整理算法 分代收集理论 当前商业虚拟机的垃圾收集器&#xff0c;大多数都遵循了“分代收集”&#xff08;Generational Collection&#xff09;[1]的理论进 行设计&#xff0c;分代收集名为理论&#xff0c;实质是一套符…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...