当前位置: 首页 > news >正文

支持向量机(二)

文章目录

  • 前言
  • 具体内容

前言

总算要对稍微有点难度的地方动手了,前面介绍的线性可分或者线性不可分的情况,都是使用平面作为分割面的,现在我们采用另一种分割面的设计方法,也就是核方法。
核方法涉及的分割面不再是 w x + b = 0 wx+b=0 wx+b=0,而是 f ( x ) = 0 f(x)=0 f(x)=0了。

具体内容

核方法其实就是坐标映射方法,类似于我们进行回归的时候对于反函数曲线采用 y = w x + b y=\frac{w}{x}+b y=xw+b的形式来对数据进行拟合。
我们常用的标准做法都是先将原始数据 x x x映射为 1 x \frac{1}{x} x1,然后对于数据 ( 1 x , y ) (\frac{1}{x},y) (x1,y)寻找线性函数 y = k t + b y=kt+b y=kt+b来拟合。

在非线性支持向量机中,我们需要把原始特征x通过映射函数变换为 ϕ ( x ) \phi(x) ϕ(x),对于这个映射函数没有什么要求,只不过什么样的映射函数映射以后分类效果最佳是未知的,是需要通过比较才能发现的。
映射函数一般都是把原始特征 x x x变为另一个向量 [ 1 , x 1 , ⋯ , x n , x 1 2 , ⋯ , x i x j , ⋯ , x n 2 , ⋯ ] [1,x_1,\cdots,x_n,x_1^2,\cdots,x_ix_j,\cdots,x_n^2,\cdots] [1,x1,,xn,x12,,xixj,,xn2,]其中的一项或者几项,具体是几项视具体情况确定,这个的目标是保留原始信息同时要增加尽可能多的生成信息,所以一般往高维方向映射。
当然这个函数设计好以后,我们在支持向量机的对偶函数中其实计算的是 K ( x i , x j ) K(x_i,x_j) K(xi,xj),这个函数是上面映射函数的乘积,可能计算更加复杂,所以从方便对偶函数的计算角度出发,设计了专门的对偶核函数,不过对偶核函数是有要求的,需要对所有特征 x x x所构成的gram矩阵是半正定的。
而这种情况下我们可以设计方便计算的核函数,比如:
多项式核函数: K ( x , z ) = ( x ⋅ z + 1 ) p K(x,z)=(x\cdot z+1)^p K(x,z)=(xz+1)p,计算难度大大减小,而且这个多项式核函数对应的映射函数也比较好求:
K ( x , z ) = ( x ⋅ z + 1 ) 2 = ( x 1 z 1 + x 2 z 2 + 1 ) 2 = x 1 2 z 1 2 + 2 x 1 x 2 z 1 z 2 + 2 x 1 z 1 + x 2 2 z 2 2 + 2 x 2 z 2 + 1 = [ x 1 2 , 2 x 1 x 2 , 2 x 1 , x 2 2 , 2 x 2 , 1 ] ∗ [ z 1 2 , 2 z 1 z 2 , 2 z 1 , z 2 2 , 2 z 2 , 1 ] T \begin{align*} K(x,z)&=(x\cdot z+1)^2\\ &=(x_1z_1+x_2z_2+1)^2\\ &=x_1^2z_1^2+2x_1x_2z_1z_2+2x_1z_1+x_2^2z_2^2+2x_2z_2+1\\ &=[x_1^2,\sqrt{2}x_1x_2,\sqrt{2}x_1,x_2^2,\sqrt{2}x_2,1]*[z_1^2,\sqrt{2}z_1z_2,\sqrt{2}z_1,z_2^2,\sqrt{2}z_2,1]^T \end{align*} K(x,z)=(xz+1)2=(x1z1+x2z2+1)2=x12z12+2x1x2z1z2+2x1z1+x22z22+2x2z2+1=[x12,2 x1x2,2 x1,x22,2 x2,1][z12,2 z1z2,2 z1,z22,2 z2,1]T

相当于截取了泰勒展开式中的前几项。
换句话说,如果我们想将坐标映射为 [ 1 , x 1 , x 2 , x 1 2 , x 1 x 2 , x 2 2 ] [1,x_1,x_2,x_1^2,x_1x_2,x_2^2] [1,x1,x2,x12,x1x2,x22],然后利用映射后的坐标来计算 w [ 1 , x 1 , x 2 , x 1 2 , x 1 x 2 , x 2 2 ] T + b w[1,x_1,x_2,x_1^2,x_1x_2,x_2^2]^T+b w[1,x1,x2,x12,x1x2,x22]T+b来作为判别函数,那么这个分界面问题的对偶函数中 ϕ ( x i ) ϕ ( x j ) \phi(x_i)\phi(x_j) ϕ(xi)ϕ(xj)就是上面的 ( x ⋅ z + 1 ) p (x\cdot z+1)^p (xz+1)p的形式,也就是我们不用知道中间映射后的坐标,而可以直接计算 ( x i ⋅ x j + 1 ) p (x_i\cdot x_j+1)^p (xixj+1)p

高斯核函数; K ( x , z ) = exp ⁡ ( − ∥ x − z ∥ 2 2 σ 2 ) K(x,z)=\exp(-\frac{{\|x-z\|}^2}{2\sigma^2}) K(x,z)=exp(2σ2xz2),计算难度大大减小,但是这个核函数对应的映射函数不容易求出来。
K ( x , z ) = exp ⁡ ( − ( x 1 − z 1 ) 2 + ( x 2 − z 2 ) 2 2 σ 2 ) = exp ⁡ ( − x 1 2 + z 1 2 − 2 x 1 z 1 + x 2 2 + z 2 2 − 2 x 2 z 2 2 σ 2 ) = exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − z 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) exp ⁡ ( − z 2 2 2 σ 2 ) exp ⁡ ( 2 x 1 z 1 2 σ 2 ) exp ⁡ ( 2 x 2 z 2 2 σ 2 ) = exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − z 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) exp ⁡ ( − z 2 2 2 σ 2 ) [ 1 + 2 x 1 z 1 2 σ 2 + ⋯ + 1 n ! ( 2 x 1 z 1 2 σ 2 ) n + ⋯ ] [ 1 + 2 x 2 z 2 2 σ 2 + ⋯ + 1 n ! ( 2 x 2 z 2 2 σ 2 ) n + ⋯ ] = exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − z 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) exp ⁡ ( − z 2 2 2 σ 2 ) [ ∑ t = 0 + ∞ ∑ k = 0 + ∞ 1 t ! ( 2 x 1 z 1 2 σ 2 ) t 1 k ! ( 2 x 2 z 2 2 σ 2 ) k ] = exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] ∗ exp ⁡ ( − z 1 2 2 σ 2 ) exp ⁡ ( − z 2 2 2 σ 2 ) [ 1 , z 1 σ , ⋯ , 1 n ! ( z 1 σ ) n , ⋯ , z 2 σ , z 1 z 2 σ 2 , ⋯ , 1 n ! ( z 1 n z 2 σ n + 1 ) , ⋯ , 1 t ! n ! z 1 t z 2 n σ t + n , ⋯ ] \begin{align*} K(x,z)=&\exp(-\frac{(x_1-z_1)^2+(x_2-z_2)^2}{2\sigma^2})\\ =&\exp(-\frac{x_1^2+z_1^2-2x_1z_1+x_2^2+z_2^2-2x_2z_2}{2\sigma^2})\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})\exp(\frac{2x_1z_1}{2\sigma^2})\exp(\frac{2x_2z_2}{2\sigma^2})\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})[1+\frac{2x_1z_1}{2\sigma^2}+\cdots+\frac{1}{n!}(\frac{2x_1z_1}{2\sigma^2})^n+\cdots][1+\frac{2x_2z_2}{2\sigma^2}+\cdots+\frac{1}{n!}(\frac{2x_2z_2}{2\sigma^2})^n+\cdots]\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})[\sum_{t=0}^{+\infty}\sum_{k=0}^{+\infty}\frac{1}{t!}(\frac{2x_1z_1}{2\sigma^2})^t\frac{1}{k!}(\frac{2x_2z_2}{2\sigma^2})^k]\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots]*\\ &\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})[1,\frac{z_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{z_1}{\sigma})^n,\cdots,\frac{z_2}{\sigma},\frac{z_1z_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{z_1^nz_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{z_1^tz_2^n}{\sigma^{t+n}},\cdots] \end{align*} K(x,z)======exp(2σ2(x1z1)2+(x2z2)2)exp(2σ2x12+z122x1z1+x22+z222x2z2)exp(2σ2x12)exp(2σ2z12)exp(2σ2x22)exp(2σ2z22)exp(2σ22x1z1)exp(2σ22x2z2)exp(2σ2x12)exp(2σ2z12)exp(2σ2x22)exp(2σ2z22)[1+2σ22x1z1++n!1(2σ22x1z1)n+][1+2σ22x2z2++n!1(2σ22x2z2)n+]exp(2σ2x12)exp(2σ2z12)exp(2σ2x22)exp(2σ2z22)[t=0+k=0+t!1(2σ22x1z1)tk!1(2σ22x2z2)k]exp(2σ2x12)exp(2σ2x22)[1,σx1,,n!1 (σx1)n,,σx2,σ2x1x2,,n!1 (σn+1x1nx2),,t!n!1 σt+nx1tx2n,]exp(2σ2z12)exp(2σ2z22)[1,σz1,,n!1 (σz1)n,,σz2,σ2z1z2,,n!1 (σn+1z1nz2),,t!n!1 σt+nz1tz2n,]

所以两个映射函数分别如上所示:
ϕ ( x ) = exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] \phi(x)=\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots] ϕ(x)=exp(2σ2x12)exp(2σ2x22)[1,σx1,,n!1 (σx1)n,,σx2,σ2x1x2,,n!1 (σn+1x1nx2),,t!n!1 σt+nx1tx2n,]

如果只看后面的向量的话,他就是泰勒展开式中各个项,但是它前面还乘上了系数 exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) \exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2}) exp(2σ2x12)exp(2σ2x22)缩放了一下。
换句话说,这个映射函数把原始特征映射为了一个无穷维的坐标,我们实际上做的是用这个映射后的坐标 exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] \exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots] exp(2σ2x12)exp(2σ2x22)[1,σx1,,n!1 (σx1)n,,σx2,σ2x1x2,,n!1 (σn+1x1nx2),,t!n!1 σt+nx1tx2n,]去构成分界面 w exp ⁡ ( − x 1 2 2 σ 2 ) exp ⁡ ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] + b w\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots]+b wexp(2σ2x12)exp(2σ2x22)[1,σx1,,n!1 (σx1)n,,σx2,σ2x1x2,,n!1 (σn+1x1nx2),,t!n!1 σt+nx1tx2n,]+b作为分界面,其中 w w w为无穷维向量,那么这个分界面问题的对偶函数中 ϕ ( x i ) ϕ ( x j ) \phi(x_i)\phi(x_j) ϕ(xi)ϕ(xj)就是上面的 exp ⁡ ( − ( x 1 − z 1 ) 2 + ( x 2 − z 2 ) 2 2 σ 2 ) \exp(-\frac{(x_1-z_1)^2+(x_2-z_2)^2}{2\sigma^2}) exp(2σ2(x1z1)2+(x2z2)2)的形式,也就是我们不用知道中间映射后的坐标,而可以直接计算 exp ⁡ ( − ( x 1 − z 1 ) 2 + ( x 2 − z 2 ) 2 2 σ 2 ) \exp(-\frac{(x_1-z_1)^2+(x_2-z_2)^2}{2\sigma^2}) exp(2σ2(x1z1)2+(x2z2)2)

相关文章:

支持向量机(二)

文章目录 前言具体内容 前言 总算要对稍微有点难度的地方动手了,前面介绍的线性可分或者线性不可分的情况,都是使用平面作为分割面的,现在我们采用另一种分割面的设计方法,也就是核方法。 核方法涉及的分割面不再是 w x b 0 wx…...

Arrays.asList 和 null 类型

一、Arrays.asList 类型简析 Arrays.asList() 返回的List 是它的内部类&#xff0c;不能使用 retainAll() 取交集&#xff0c;导致元素的删除&#xff0c;会报错。 List<String> list Arrays.asList(value.split(",")); 替换为> List<String> list…...

《论文阅读》用提示和释义模拟对话情绪识别的思维过程 IJCAI 2023

《论文阅读》用提示和复述模拟对话情绪识别的思维过程 IJCAI 2023 前言简介相关知识prompt engineeringparaphrasing模型架构第一阶段第二阶段History-oriented promptExperience-oriented Prompt ConstructionLabel Paraphrasing损失函数前言 你是否也对于理解论文存在困惑?…...

【AI】机器学习——绪论

文章目录 1.1 机器学习概念1.1.1 定义统计机器学习与数据挖掘区别机器学习前提 1.1.2 术语1.1.3 特点以数据为研究对象目标方法——基于数据构建模型SML三要素SML步骤 1.2 分类1.2.1 参数化/非参数化方法1.2.2 按算法分类1.2.3 按模型分类概率模型非概率模型逻辑斯蒂回归 1.2.4…...

linux 查看端口占用

查看端口占用 使用lsof 可以使用lsof -i:端口号 来查看端口占用情况 lsof -i:8010COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAMEnginx 35653 zhanghe 10u IPv4 0xcac2e413ddf9c5b9 0t0 TCP *:8010 (LISTEN)nginx 35654 zhanghe 10u…...

modernC++手撸任意层神经网络22前向传播反向传播梯度下降等23代码补全的例子0901b

以下神经网络代码,请添加输入:{{1,0},{1,1}},输出{1,0};添加反向传播,梯度下降等训练! 以下神经网络代码,请添加输入:{{1,0},{1,1}},输出{1,0};添加反向传播,梯度下降等训练! #include <iostream> #include<vector> #include<Eigen/Dense> #include<rando…...

tkinter控件样式

文章目录 以按钮为例共有参数动态属性 tkinter系列&#xff1a; GUI初步&#x1f48e;布局&#x1f48e;绑定变量&#x1f48e;绑定事件&#x1f48e;消息框&#x1f48e;文件对话框&#x1f48e;控件样式扫雷小游戏&#x1f48e;强行表白神器 以按钮为例 tkinter对控件的诸…...

【linux命令讲解大全】042. 深入了解 which 命令:查找和显示命令的绝对路径

文章目录 which补充说明语法选项参数实例 从零学 python which 查找并显示给定命令的绝对路径 补充说明 which 命令用于查找并显示给定命令的绝对路径&#xff0c;环境变量 PATH 中保存了查找命令时需要遍历的目录。which 指令会在环境变量 $PATH 设置的目录里查找符合条件的…...

实战项目 在线学院之集成springsecurity的配置以及执行流程

一 后端操作配置 1.0 工程结构 1.1 在common下创建spring_security模块 1.2 pom文件中依赖的注入 1.3 在service_acl模块服务中引入spring-security权限认证模块 1.3.1 service_acl引入spring-security 1.3.2 在service_acl编写查询数据库信息 定义userDetailServiceImpl 查…...

【ARM CoreLink CCI-400 控制器简介】

文章目录 CCI-400 介绍 CCI-400 介绍 CCI&#xff08;Cache Coherent Interconnect&#xff09;是ARM 中 的Cache一致性控制器。 CCI-400 将 Interconnect 和coherency 功能结合到一个模块中。它支持多达两个ACE master 点的interface&#xff0c;例如&#xff1a; Cortex-A…...

Linux xargs命令继续学习

之前学习过Linux xargs&#xff0c;对此非常的不熟悉&#xff0c;下面继续学习一下&#xff1b; xargs 可以将管道或标准输入&#xff08;stdin&#xff09;数据转换成命令行参数&#xff0c;也能够从文件的输出中读取数据&#xff1b; xargs也可以给命令传递参数&#xff1b;…...

【广州华锐互动】数字孪生智慧楼宇3D可视化系统:掌握实时运行状态,优化运营管理

在过去的几年中&#xff0c;科技的发展极大地改变了我们的生活和工作方式。其中&#xff0c;三维数据可视化技术的出现&#xff0c;为我们提供了全新的理解和观察世界的方式。特别是在建筑行业&#xff0c;数字孪生智慧楼宇3D可视化系统的出现&#xff0c;让我们有机会重新定义…...

20230904工作心得:集合应该如何优雅判空?

1 集合判空 List<String> newlist null;//空指针if( !newlist.isEmpty()){newlist.forEach(System.out::println);}//空指针if(newlist.size()>0 && newlist!null){newlist.forEach(System.out::println);}//可行if(newlist!null && newlist.size()&…...

使用Python进行健身手表数据分析

健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据&#xff0c;以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。 Fitness Watch数据分析是健…...

什么是malloxx勒索病毒,服务器中malloxx勒索病毒了怎么办?

Malloxx勒索病毒是一种新型的电脑病毒&#xff0c;它通过加密用户电脑中的重要文件数据来威胁用户&#xff0c;并以此勒索钱财。这种病毒并不是让用户的电脑瘫痪&#xff0c;而是以非常独特的方式进行攻击。在感染了Malloxx勒索病毒后&#xff0c;它会加密用户服务器中的数据&a…...

CocosCreator3.8研究笔记(六)CocosCreator 脚本装饰器的理解

一、什么是装饰器&#xff1f; 装饰器是TypeScript脚本语言中的概念。 TypeScript的解释&#xff1a;在一些场景下&#xff0c;我们需要额外的特性来支持标注或修改类及其成员。装饰器&#xff08;Decorators&#xff09;为我们在类的声明及成员上通过元编程语法添加标注提供了…...

docker login harbor http login登录

前言 搭建的 harbor 仓库为 http 协议&#xff0c;在本地登录时出现如下报错&#xff1a; docker login http://192.168.xx.xx Username: admin Password: Error response from daemon: Get "https://192.168.xx.xx/v2/": dialing 192.168.xx.xx:443 matches static …...

day5 qt

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);timer_idthis->startTimer(100);//啓動一個定時器 每100ms發送一次信號ui->Edit1->setPlaceholderTex…...

【80天学习完《深入理解计算机系统》】第十三天 3.7 缓冲区溢出 attack lab

3.7 缓冲区溢出 && attack lab...

Hadoop生态之hive

一 概述与特点 之所以把Hive放在Hadoop生态里面去写,是因为它本身依赖Hadoop。Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类 SQL 查询功能。 其本质是将 SQL 转换为 MapReduce/Spark 的任务进行运算,底层由 HDFS 来提供…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...