支持向量机(二)
文章目录
- 前言
- 具体内容
前言
总算要对稍微有点难度的地方动手了,前面介绍的线性可分或者线性不可分的情况,都是使用平面作为分割面的,现在我们采用另一种分割面的设计方法,也就是核方法。
核方法涉及的分割面不再是 w x + b = 0 wx+b=0 wx+b=0,而是 f ( x ) = 0 f(x)=0 f(x)=0了。
具体内容
核方法其实就是坐标映射方法,类似于我们进行回归的时候对于反函数曲线采用 y = w x + b y=\frac{w}{x}+b y=xw+b的形式来对数据进行拟合。
我们常用的标准做法都是先将原始数据 x x x映射为 1 x \frac{1}{x} x1,然后对于数据 ( 1 x , y ) (\frac{1}{x},y) (x1,y)寻找线性函数 y = k t + b y=kt+b y=kt+b来拟合。
在非线性支持向量机中,我们需要把原始特征x
通过映射函数变换为 ϕ ( x ) \phi(x) ϕ(x),对于这个映射函数没有什么要求,只不过什么样的映射函数映射以后分类效果最佳是未知的,是需要通过比较才能发现的。
映射函数一般都是把原始特征 x x x变为另一个向量 [ 1 , x 1 , ⋯ , x n , x 1 2 , ⋯ , x i x j , ⋯ , x n 2 , ⋯ ] [1,x_1,\cdots,x_n,x_1^2,\cdots,x_ix_j,\cdots,x_n^2,\cdots] [1,x1,⋯,xn,x12,⋯,xixj,⋯,xn2,⋯]其中的一项或者几项,具体是几项视具体情况确定,这个的目标是保留原始信息同时要增加尽可能多的生成信息,所以一般往高维方向映射。
当然这个函数设计好以后,我们在支持向量机的对偶函数中其实计算的是 K ( x i , x j ) K(x_i,x_j) K(xi,xj),这个函数是上面映射函数的乘积,可能计算更加复杂,所以从方便对偶函数的计算角度出发,设计了专门的对偶核函数,不过对偶核函数是有要求的,需要对所有特征 x x x所构成的gram矩阵是半正定的。
而这种情况下我们可以设计方便计算的核函数,比如:
多项式核函数: K ( x , z ) = ( x ⋅ z + 1 ) p K(x,z)=(x\cdot z+1)^p K(x,z)=(x⋅z+1)p,计算难度大大减小,而且这个多项式核函数对应的映射函数也比较好求:
K ( x , z ) = ( x ⋅ z + 1 ) 2 = ( x 1 z 1 + x 2 z 2 + 1 ) 2 = x 1 2 z 1 2 + 2 x 1 x 2 z 1 z 2 + 2 x 1 z 1 + x 2 2 z 2 2 + 2 x 2 z 2 + 1 = [ x 1 2 , 2 x 1 x 2 , 2 x 1 , x 2 2 , 2 x 2 , 1 ] ∗ [ z 1 2 , 2 z 1 z 2 , 2 z 1 , z 2 2 , 2 z 2 , 1 ] T \begin{align*} K(x,z)&=(x\cdot z+1)^2\\ &=(x_1z_1+x_2z_2+1)^2\\ &=x_1^2z_1^2+2x_1x_2z_1z_2+2x_1z_1+x_2^2z_2^2+2x_2z_2+1\\ &=[x_1^2,\sqrt{2}x_1x_2,\sqrt{2}x_1,x_2^2,\sqrt{2}x_2,1]*[z_1^2,\sqrt{2}z_1z_2,\sqrt{2}z_1,z_2^2,\sqrt{2}z_2,1]^T \end{align*} K(x,z)=(x⋅z+1)2=(x1z1+x2z2+1)2=x12z12+2x1x2z1z2+2x1z1+x22z22+2x2z2+1=[x12,2x1x2,2x1,x22,2x2,1]∗[z12,2z1z2,2z1,z22,2z2,1]T
相当于截取了泰勒展开式中的前几项。
换句话说,如果我们想将坐标映射为 [ 1 , x 1 , x 2 , x 1 2 , x 1 x 2 , x 2 2 ] [1,x_1,x_2,x_1^2,x_1x_2,x_2^2] [1,x1,x2,x12,x1x2,x22],然后利用映射后的坐标来计算 w [ 1 , x 1 , x 2 , x 1 2 , x 1 x 2 , x 2 2 ] T + b w[1,x_1,x_2,x_1^2,x_1x_2,x_2^2]^T+b w[1,x1,x2,x12,x1x2,x22]T+b来作为判别函数,那么这个分界面问题的对偶函数中 ϕ ( x i ) ϕ ( x j ) \phi(x_i)\phi(x_j) ϕ(xi)ϕ(xj)就是上面的 ( x ⋅ z + 1 ) p (x\cdot z+1)^p (x⋅z+1)p的形式,也就是我们不用知道中间映射后的坐标,而可以直接计算 ( x i ⋅ x j + 1 ) p (x_i\cdot x_j+1)^p (xi⋅xj+1)p。
高斯核函数; K ( x , z ) = exp ( − ∥ x − z ∥ 2 2 σ 2 ) K(x,z)=\exp(-\frac{{\|x-z\|}^2}{2\sigma^2}) K(x,z)=exp(−2σ2∥x−z∥2),计算难度大大减小,但是这个核函数对应的映射函数不容易求出来。
K ( x , z ) = exp ( − ( x 1 − z 1 ) 2 + ( x 2 − z 2 ) 2 2 σ 2 ) = exp ( − x 1 2 + z 1 2 − 2 x 1 z 1 + x 2 2 + z 2 2 − 2 x 2 z 2 2 σ 2 ) = exp ( − x 1 2 2 σ 2 ) exp ( − z 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) exp ( − z 2 2 2 σ 2 ) exp ( 2 x 1 z 1 2 σ 2 ) exp ( 2 x 2 z 2 2 σ 2 ) = exp ( − x 1 2 2 σ 2 ) exp ( − z 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) exp ( − z 2 2 2 σ 2 ) [ 1 + 2 x 1 z 1 2 σ 2 + ⋯ + 1 n ! ( 2 x 1 z 1 2 σ 2 ) n + ⋯ ] [ 1 + 2 x 2 z 2 2 σ 2 + ⋯ + 1 n ! ( 2 x 2 z 2 2 σ 2 ) n + ⋯ ] = exp ( − x 1 2 2 σ 2 ) exp ( − z 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) exp ( − z 2 2 2 σ 2 ) [ ∑ t = 0 + ∞ ∑ k = 0 + ∞ 1 t ! ( 2 x 1 z 1 2 σ 2 ) t 1 k ! ( 2 x 2 z 2 2 σ 2 ) k ] = exp ( − x 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] ∗ exp ( − z 1 2 2 σ 2 ) exp ( − z 2 2 2 σ 2 ) [ 1 , z 1 σ , ⋯ , 1 n ! ( z 1 σ ) n , ⋯ , z 2 σ , z 1 z 2 σ 2 , ⋯ , 1 n ! ( z 1 n z 2 σ n + 1 ) , ⋯ , 1 t ! n ! z 1 t z 2 n σ t + n , ⋯ ] \begin{align*} K(x,z)=&\exp(-\frac{(x_1-z_1)^2+(x_2-z_2)^2}{2\sigma^2})\\ =&\exp(-\frac{x_1^2+z_1^2-2x_1z_1+x_2^2+z_2^2-2x_2z_2}{2\sigma^2})\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})\exp(\frac{2x_1z_1}{2\sigma^2})\exp(\frac{2x_2z_2}{2\sigma^2})\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})[1+\frac{2x_1z_1}{2\sigma^2}+\cdots+\frac{1}{n!}(\frac{2x_1z_1}{2\sigma^2})^n+\cdots][1+\frac{2x_2z_2}{2\sigma^2}+\cdots+\frac{1}{n!}(\frac{2x_2z_2}{2\sigma^2})^n+\cdots]\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})[\sum_{t=0}^{+\infty}\sum_{k=0}^{+\infty}\frac{1}{t!}(\frac{2x_1z_1}{2\sigma^2})^t\frac{1}{k!}(\frac{2x_2z_2}{2\sigma^2})^k]\\ =&\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots]*\\ &\exp(-\frac{z_1^2}{2\sigma^2})\exp(-\frac{z_2^2}{2\sigma^2})[1,\frac{z_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{z_1}{\sigma})^n,\cdots,\frac{z_2}{\sigma},\frac{z_1z_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{z_1^nz_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{z_1^tz_2^n}{\sigma^{t+n}},\cdots] \end{align*} K(x,z)======exp(−2σ2(x1−z1)2+(x2−z2)2)exp(−2σ2x12+z12−2x1z1+x22+z22−2x2z2)exp(−2σ2x12)exp(−2σ2z12)exp(−2σ2x22)exp(−2σ2z22)exp(2σ22x1z1)exp(2σ22x2z2)exp(−2σ2x12)exp(−2σ2z12)exp(−2σ2x22)exp(−2σ2z22)[1+2σ22x1z1+⋯+n!1(2σ22x1z1)n+⋯][1+2σ22x2z2+⋯+n!1(2σ22x2z2)n+⋯]exp(−2σ2x12)exp(−2σ2z12)exp(−2σ2x22)exp(−2σ2z22)[t=0∑+∞k=0∑+∞t!1(2σ22x1z1)tk!1(2σ22x2z2)k]exp(−2σ2x12)exp(−2σ2x22)[1,σx1,⋯,n!1(σx1)n,⋯,σx2,σ2x1x2,⋯,n!1(σn+1x1nx2),⋯,t!n!1σt+nx1tx2n,⋯]∗exp(−2σ2z12)exp(−2σ2z22)[1,σz1,⋯,n!1(σz1)n,⋯,σz2,σ2z1z2,⋯,n!1(σn+1z1nz2),⋯,t!n!1σt+nz1tz2n,⋯]
所以两个映射函数分别如上所示:
ϕ ( x ) = exp ( − x 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] \phi(x)=\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots] ϕ(x)=exp(−2σ2x12)exp(−2σ2x22)[1,σx1,⋯,n!1(σx1)n,⋯,σx2,σ2x1x2,⋯,n!1(σn+1x1nx2),⋯,t!n!1σt+nx1tx2n,⋯]
如果只看后面的向量的话,他就是泰勒展开式中各个项,但是它前面还乘上了系数 exp ( − x 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) \exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2}) exp(−2σ2x12)exp(−2σ2x22)缩放了一下。
换句话说,这个映射函数把原始特征映射为了一个无穷维的坐标,我们实际上做的是用这个映射后的坐标 exp ( − x 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] \exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots] exp(−2σ2x12)exp(−2σ2x22)[1,σx1,⋯,n!1(σx1)n,⋯,σx2,σ2x1x2,⋯,n!1(σn+1x1nx2),⋯,t!n!1σt+nx1tx2n,⋯]去构成分界面 w exp ( − x 1 2 2 σ 2 ) exp ( − x 2 2 2 σ 2 ) [ 1 , x 1 σ , ⋯ , 1 n ! ( x 1 σ ) n , ⋯ , x 2 σ , x 1 x 2 σ 2 , ⋯ , 1 n ! ( x 1 n x 2 σ n + 1 ) , ⋯ , 1 t ! n ! x 1 t x 2 n σ t + n , ⋯ ] + b w\exp(-\frac{x_1^2}{2\sigma^2})\exp(-\frac{x_2^2}{2\sigma^2})[1,\frac{x_1}{\sigma},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1}{\sigma})^n,\cdots,\frac{x_2}{\sigma},\frac{x_1x_2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}(\frac{x_1^nx_2}{\sigma^{n+1}}),\cdots,\sqrt{\frac{1}{t!n!}}\frac{x_1^tx_2^n}{\sigma^{t+n}},\cdots]+b wexp(−2σ2x12)exp(−2σ2x22)[1,σx1,⋯,n!1(σx1)n,⋯,σx2,σ2x1x2,⋯,n!1(σn+1x1nx2),⋯,t!n!1σt+nx1tx2n,⋯]+b作为分界面,其中 w w w为无穷维向量,那么这个分界面问题的对偶函数中 ϕ ( x i ) ϕ ( x j ) \phi(x_i)\phi(x_j) ϕ(xi)ϕ(xj)就是上面的 exp ( − ( x 1 − z 1 ) 2 + ( x 2 − z 2 ) 2 2 σ 2 ) \exp(-\frac{(x_1-z_1)^2+(x_2-z_2)^2}{2\sigma^2}) exp(−2σ2(x1−z1)2+(x2−z2)2)的形式,也就是我们不用知道中间映射后的坐标,而可以直接计算 exp ( − ( x 1 − z 1 ) 2 + ( x 2 − z 2 ) 2 2 σ 2 ) \exp(-\frac{(x_1-z_1)^2+(x_2-z_2)^2}{2\sigma^2}) exp(−2σ2(x1−z1)2+(x2−z2)2)。
相关文章:
支持向量机(二)
文章目录 前言具体内容 前言 总算要对稍微有点难度的地方动手了,前面介绍的线性可分或者线性不可分的情况,都是使用平面作为分割面的,现在我们采用另一种分割面的设计方法,也就是核方法。 核方法涉及的分割面不再是 w x b 0 wx…...

Arrays.asList 和 null 类型
一、Arrays.asList 类型简析 Arrays.asList() 返回的List 是它的内部类,不能使用 retainAll() 取交集,导致元素的删除,会报错。 List<String> list Arrays.asList(value.split(",")); 替换为> List<String> list…...
《论文阅读》用提示和释义模拟对话情绪识别的思维过程 IJCAI 2023
《论文阅读》用提示和复述模拟对话情绪识别的思维过程 IJCAI 2023 前言简介相关知识prompt engineeringparaphrasing模型架构第一阶段第二阶段History-oriented promptExperience-oriented Prompt ConstructionLabel Paraphrasing损失函数前言 你是否也对于理解论文存在困惑?…...

【AI】机器学习——绪论
文章目录 1.1 机器学习概念1.1.1 定义统计机器学习与数据挖掘区别机器学习前提 1.1.2 术语1.1.3 特点以数据为研究对象目标方法——基于数据构建模型SML三要素SML步骤 1.2 分类1.2.1 参数化/非参数化方法1.2.2 按算法分类1.2.3 按模型分类概率模型非概率模型逻辑斯蒂回归 1.2.4…...
linux 查看端口占用
查看端口占用 使用lsof 可以使用lsof -i:端口号 来查看端口占用情况 lsof -i:8010COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAMEnginx 35653 zhanghe 10u IPv4 0xcac2e413ddf9c5b9 0t0 TCP *:8010 (LISTEN)nginx 35654 zhanghe 10u…...
modernC++手撸任意层神经网络22前向传播反向传播梯度下降等23代码补全的例子0901b
以下神经网络代码,请添加输入:{{1,0},{1,1}},输出{1,0};添加反向传播,梯度下降等训练! 以下神经网络代码,请添加输入:{{1,0},{1,1}},输出{1,0};添加反向传播,梯度下降等训练! #include <iostream> #include<vector> #include<Eigen/Dense> #include<rando…...

tkinter控件样式
文章目录 以按钮为例共有参数动态属性 tkinter系列: GUI初步💎布局💎绑定变量💎绑定事件💎消息框💎文件对话框💎控件样式扫雷小游戏💎强行表白神器 以按钮为例 tkinter对控件的诸…...
【linux命令讲解大全】042. 深入了解 which 命令:查找和显示命令的绝对路径
文章目录 which补充说明语法选项参数实例 从零学 python which 查找并显示给定命令的绝对路径 补充说明 which 命令用于查找并显示给定命令的绝对路径,环境变量 PATH 中保存了查找命令时需要遍历的目录。which 指令会在环境变量 $PATH 设置的目录里查找符合条件的…...

实战项目 在线学院之集成springsecurity的配置以及执行流程
一 后端操作配置 1.0 工程结构 1.1 在common下创建spring_security模块 1.2 pom文件中依赖的注入 1.3 在service_acl模块服务中引入spring-security权限认证模块 1.3.1 service_acl引入spring-security 1.3.2 在service_acl编写查询数据库信息 定义userDetailServiceImpl 查…...

【ARM CoreLink CCI-400 控制器简介】
文章目录 CCI-400 介绍 CCI-400 介绍 CCI(Cache Coherent Interconnect)是ARM 中 的Cache一致性控制器。 CCI-400 将 Interconnect 和coherency 功能结合到一个模块中。它支持多达两个ACE master 点的interface,例如: Cortex-A…...

Linux xargs命令继续学习
之前学习过Linux xargs,对此非常的不熟悉,下面继续学习一下; xargs 可以将管道或标准输入(stdin)数据转换成命令行参数,也能够从文件的输出中读取数据; xargs也可以给命令传递参数;…...

【广州华锐互动】数字孪生智慧楼宇3D可视化系统:掌握实时运行状态,优化运营管理
在过去的几年中,科技的发展极大地改变了我们的生活和工作方式。其中,三维数据可视化技术的出现,为我们提供了全新的理解和观察世界的方式。特别是在建筑行业,数字孪生智慧楼宇3D可视化系统的出现,让我们有机会重新定义…...
20230904工作心得:集合应该如何优雅判空?
1 集合判空 List<String> newlist null;//空指针if( !newlist.isEmpty()){newlist.forEach(System.out::println);}//空指针if(newlist.size()>0 && newlist!null){newlist.forEach(System.out::println);}//可行if(newlist!null && newlist.size()&…...

使用Python进行健身手表数据分析
健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据,以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。 Fitness Watch数据分析是健…...

什么是malloxx勒索病毒,服务器中malloxx勒索病毒了怎么办?
Malloxx勒索病毒是一种新型的电脑病毒,它通过加密用户电脑中的重要文件数据来威胁用户,并以此勒索钱财。这种病毒并不是让用户的电脑瘫痪,而是以非常独特的方式进行攻击。在感染了Malloxx勒索病毒后,它会加密用户服务器中的数据&a…...

CocosCreator3.8研究笔记(六)CocosCreator 脚本装饰器的理解
一、什么是装饰器? 装饰器是TypeScript脚本语言中的概念。 TypeScript的解释:在一些场景下,我们需要额外的特性来支持标注或修改类及其成员。装饰器(Decorators)为我们在类的声明及成员上通过元编程语法添加标注提供了…...
docker login harbor http login登录
前言 搭建的 harbor 仓库为 http 协议,在本地登录时出现如下报错: docker login http://192.168.xx.xx Username: admin Password: Error response from daemon: Get "https://192.168.xx.xx/v2/": dialing 192.168.xx.xx:443 matches static …...

day5 qt
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);timer_idthis->startTimer(100);//啓動一個定時器 每100ms發送一次信號ui->Edit1->setPlaceholderTex…...

【80天学习完《深入理解计算机系统》】第十三天 3.7 缓冲区溢出 attack lab
3.7 缓冲区溢出 && attack lab...

Hadoop生态之hive
一 概述与特点 之所以把Hive放在Hadoop生态里面去写,是因为它本身依赖Hadoop。Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类 SQL 查询功能。 其本质是将 SQL 转换为 MapReduce/Spark 的任务进行运算,底层由 HDFS 来提供…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...