L1-061 新胖子公式(Python实现) 测试点全过
前言: {\color{Blue}前言:} 前言:
- 本系列题使用的是,“PTA中的团体程序设计天梯赛——练习集”的题库,难度有L1、L2、L3三个等级,分别对应团体程序设计天梯赛的三个难度。
- 更新取决于题目的难度,和学校的事情,但尽可能保证每日更新,若没更新次日补上。
- 之前胖子那道题的升级版
- 我的方法可能不是最简单的,如有什么好的建议,欢迎各位CSDN的朋友告诉我
题目
根据钱江晚报官方微博的报导,最新的肥胖计算方法为:体重(kg) / 身高(m) 的平方。如果超过 25,你就是胖子。于是本题就请你编写程序自动判断一个人到底算不算胖子。
输入格式
输入在一行中给出两个正数,依次为一个人的体重(以 kg 为单位)和身高(以 m 为单位),其间以空格分隔。其中体重不超过 1000 kg,身高不超过 3.0 m。
输出格式:
首先输出将该人的体重和身高代入肥胖公式的计算结果,保留小数点后 1 位。如果这个数值大于 25,就在第二行输出 ··PANG··,否则输出 ··Hai Xing··。
输入样例1:
100.1 1.74
输出样例1:
33.1
PANG
输入样例2:
65 1.70
输出样例2:
22.5
Hai Xing
题解
# 读取输入的体重和身高
weight, height = map(float, input().split())# 计算肥胖指数
bmi = weight / (height ** 2)# 输出肥胖指数
print(f"{bmi:.1f}")# 判断是否为胖子并输出结果
if bmi > 25:print("PANG")
else:print("Hai Xing")相关文章:
L1-061 新胖子公式(Python实现) 测试点全过
前言: {\color{Blue}前言:} 前言: 本系列题使用的是,“PTA中的团体程序设计天梯赛——练习集”的题库,难度有L1、L2、L3三个等级,分别对应团体程序设计天梯赛的三个难度。更新取决于题目的难度,…...
潜艇来袭(Qt官方案例-2维动画游戏)
一、游戏介绍 1 开始界面 启动程序,进入开始界面。 2 开始新游戏 点击菜单:File》New Game (或者CtrlN)进入新游戏。 开始新游戏之后,会有一个海底的潜艇,和水面舰艇对战。 计算机:自动控制…...
50ETF期权开户平台(0门槛期权开户指南)
50ETF期权开户平台比较好的有:期权馆,期权科普馆,小熊期权,期权酱,财顺财经,财顺期权等,都是国内前十的期权分仓平台,下文为大家结算50ETF期权开户平台(0门槛期权开户指南…...
leaflet · 关于轨迹移动
1.引入 import MovingMarker from "../src/utils/MovingMarker"; 2.MovingMarker.js内容 import L from "leaflet"; import eventBus from ../util/eventBus; L.interpolatePosition function(p1, p2, duration, t) {var k t/duration;k (k > 0) ? …...
学生宿舍水电费自动缴费系统/基于javaweb的水电缴费系统
摘 要 “互联网”的战略实施后,很多行业的信息化水平都有了很大的提升。但是目前很多学校日常工作仍是通过人工管理的方式进行,需要在各个岗位投入大量的人力进行很多重复性工作,这样就浪费了许多的人力物力,工作效率较低&#x…...
机器人中的数值优化(十三)——QP二次规划
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…...
语言深入理解指针(非常详细)(三)
目录 数组名的理解使用指针访问数组 一维数组传参的本质二级指针指针数组指针数组模拟二维数组 数组名的理解 在上⼀个章节我们在使用指针访问数组的内容时,有这样的代码: int arr[10] {1,2,3,4,5,6,7,8,9,10}; int *p &arr[0];这里我们使用 &am…...
实训笔记8.31
实训笔记8.31 8.31笔记一、项目开发流程一共分为七个阶段1.1 数据产生阶段1.2 数据采集存储阶段1.3 数据清洗预处理阶段1.4 数据统计分析阶段1.5 数据迁移导出阶段1.6 数据可视化阶段 二、项目数据清洗预处理的实现2.1 清洗预处理规则2.1.1 数据清洗规则2.1.2 数据预处理规则 2…...
el-table 垂直表头
效果如下: 代码如下: <template><div class"vertical_head"><el-table style"width: 100%" :data"getTblData" :show-header"false"><el-table-columnv-for"(item, index) in getHe…...
B081-Lucene+ElasticSearch
目录 认识全文检索概念lucene原理全文检索的特点常见的全文检索方案 Lucene创建索引导包分析图代码 搜索索引分析图代码 ElasticSearch认识ElasticSearchES与Kibana的安装及使用说明ES相关概念理解和简单增删改查ES查询DSL查询DSL过滤 分词器IK分词器安装测试分词器 文档映射(字…...
机器学习:塑造未来的核心力量
着科技的飞速发展,机器学习已经成为我们生活中不可或缺的一部分。无论是搜索引擎、推荐系统,还是自动驾驶汽车和机器人,都依赖于机器学习算法。本文将探讨机器学习的基本概念、应用领域以及未来发展趋势。 一、机器学习的基本概念 机器学习…...
RK3568-i2c-适配8010rtc时钟芯片
硬件连接 从硬件原理图中可以看出,rtc时钟芯片挂载在i2c3总线上,设备地址需要查看芯片数据手册。编写设备树 &i2c3 {status "okay";rx8010: rx801032 {compatible "epson,rx8010";reg <0x32>;}; };使能驱动 /kernel/…...
Spring Security - 基于内存快速demo
基于内存方式 - 只作学习参考1.引入依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency>2.login.html、index.html、fail.htmllogin.html:<form method…...
6 | 从文本文件中读取单词并输出不重复的单词列表
Transformation 操作 Transformation 操作是用于从一个 RDD(Resilient Distributed Dataset)创建一个新的 RDD,通常是通过对原始 RDD 的元素进行映射、筛选、分组等操作来实现的。Transformation 操作不会立即执行,而是惰性计算,只有在 Action 操作触发时才会真正执行。以…...
【微信小程序篇】- 多环境(版本)配置
最近自己在尝试使用AIGC写一个小程序,页面、样式、包括交互函数AIGC都能够帮我完成(不过这里有一点问题AIGC的上下文关联性还是有限制,会经常出现对于需求理解跑偏情况,需要不断的重复强调,并纠正错误,才能得到你想要的…...
ssh配置(一、GitLabGitHub)
一. 为什么配置ssh 使用 ssh 克隆项目,更加安全方便。 git clone 项目时一般使用两种协议 https 和 ssh 。 二. 原理的通俗解释 ssh 解决的问题是登录时的用户身份验证问题,默认使用 RSA(也支持其他算法: RSA、DSA、ECDSA、EdD…...
开了抖店后就可以直播带货了吗?想在抖音带货的,建议认真看完!
我是王路飞。 关于抖店和直播带货的关系,其实很多人经常搞不清楚。 不然的话,也不会有这个问题的出现了:开了抖店后就可以直播带货了吗? 在我看来,这个问题很简单,但在不了解抖音电商和直播带货其中门道…...
【深度学习实验】数据可视化
目录 一、实验介绍 二、实验环境 三、实验内容 0. 导入库 1. 归一化处理 归一化 实验内容 2. 绘制归一化数据折线图 报错 解决 3. 计算移动平均值SMA 移动平均值 实验内容 4. 绘制移动平均值折线图 5 .同时绘制两图 6. array转换为tensor张量 7. 打印张量 一、…...
【Golang】函数篇
1、golang函数基本定义与使用 func 函数名 (形参列表) (返回值类型列表) {函数体return 返回值列表 }其中func用于表明这是一个函数,剩下的东西与其他语言的函数基本一致,在定义与使用的时候注意函数名、参数、返回值书写的位置即可。下面使用一个例子…...
在ubuntu上安装ns2和nam(ubuntu16.04)
在ubuntu上安装ns2和nam 版本选择安装ns2安装nam 版本选择 首先,版本的合理选择可以让我们避免很多麻烦 经过测试,ubuntu的版本选择为ubuntu16.04,ns2的版本选择为ns-2.35,nam包含于ns2 资源链接(百度网盘) 链接:https://pan.bai…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
