用 tensorflow.js 做了一个动漫分类的功能(二)
前言:
前面已经通过采集拿到了图片,并且也手动对图片做了标注。接下来就要通过 Tensorflow.js 基于 mobileNet 训练模型,最后就可以实现在采集中对图片进行自动分类了。
这种功能在应用场景里就比较多了,比如图标素材站点,用户通过上传一个图标,系统会自动匹配出相似的图标,还有二手平台,用户通过上传闲置物品图片,平台自动给出分类等,这些也都是前期对海量图片进行了标注训练而得到一个损失率极低的模型。下面就通过简答的代码实现一个小的动漫分类。

环境:
Node
Http-Server
Parcel
Tensorflow

编码:
1. 训练模型
1.1. 创建项目,安装依赖包
npm install @tensorflow/tfjs --legacy-peer-deps
npm install @tensorflow/tfjs-node-gpu --legacy-peer-deps
1.2. 全局安装 Http-Server
npm install i http-server
1.3. 下载 mobileNet 模型文件 (网上有下载)
1.4. 根目录下启动 Http 服务 (开启跨域),用于 mobileNet 和训练结果的模型可访问
http-server--cors-p8080

1.5. 创建训练执行脚本 run.js
const tf = require('@tensorflow/tfjs-node-gpu');const getData = require('./data');
const TRAIN_PATH = './动漫分类/train';
const OUT_PUT = 'output';
const MOBILENET_URL = 'http://127.0.0.1:8080/data/mobilenet/web_model/model.json';(async () => {const { ds, classes } = await getData(TRAIN_PATH, OUT_PUT);console.log(ds, classes);//引入别人训练好的模型const mobilenet = await tf.loadLayersModel(MOBILENET_URL);//查看模型结构mobilenet.summary();const model = tf.sequential();//截断模型,复用了86个层for (let i = 0; i < 86; ++i) {const layer = mobilenet.layers[i];layer.trainable = false;model.add(layer);}//降维,摊平数据model.add(tf.layers.flatten());//设置全连接层model.add(tf.layers.dense({units: 10,activation: 'relu'//设置激活函数,用于处理非线性问题}));model.add(tf.layers.dense({units: classes.length,activation: 'softmax'//用于多分类问题}));//设置损失函数,优化器model.compile({loss: 'sparseCategoricalCrossentropy',optimizer: tf.train.adam(),metrics:['acc']});//训练模型await model.fitDataset(ds, { epochs: 20 });//保存模型await model.save(`file://${process.cwd()}/${OUT_PUT}`);
})();
1.6. 创建图片与 Tensor 转换库 data.js
const fs = require('fs');
const tf = require("@tensorflow/tfjs-node-gpu");const img2x = (imgPath) => {const buffer = fs.readFileSync(imgPath);//清除数据return tf.tidy(() => {//把图片转成tensorconst imgt = tf.node.decodeImage(newUint8Array(buffer), 3);//调整图片大小const imgResize = tf.image.resizeBilinear(imgt, [224, 224]);//归一化return imgResize.toFloat().sub(255 / 2).div(255 / 2).reshape([1, 224, 224, 3]);});
}const getData = async (traindir, output) => {let classes = fs.readdirSync(traindir, 'utf-8');fs.writeFileSync(`./${output}/classes.json`, JSON.stringify(classes));const data = [];classes.forEach((dir, dirIndex) => {fs.readdirSync(`${traindir}/${dir}`).filter(n => n.match(/jpg$/)).slice(0, 1000).forEach(filename => {const imgPath = `${traindir}/${dir}/${filename}`;data.push({ imgPath, dirIndex });});});console.log(data);//打乱训练顺序,提高准确度tf.util.shuffle(data);const ds = tf.data.generator(function* () {const count = data.length;const batchSize = 32;for (let start = 0; start < count; start += batchSize) {const end = Math.min(start + batchSize, count);console.log('当前批次', start);yield tf.tidy(() => {const inputs = [];const labels = [];for (let j = start; j < end; ++j) {const { imgPath, dirIndex } = data[j];const x = img2x(imgPath);inputs.push(x);labels.push(dirIndex);}const xs = tf.concat(inputs);const ys = tf.tensor(labels);return { xs, ys };});}});return { ds, classes };
}module.exports = getData;
1.7. 运行执行文件
noderun.js

2. 调用模型
2.1. 全局安装 parcel
npminstall i parcel
2.2. 创建页面 index.html
<scriptsrc="script.js"></script><inputtype="file"onchange="predict(this.files[0])"><br>
2.3. 创建模型调用预测脚本 script.js
import * as tf from'@tensorflow/tfjs';
import { img2x, file2img } from'./utils';const MODEL_PATH = 'http://127.0.0.1:8080/t7';
const CLASSES = ["假面骑士","奥特曼","海贼王","火影忍者","龙珠"];window.onload = async () => {const model = await tf.loadLayersModel(MODEL_PATH + '/output/model.json');window.predict = async (file) => {const img = await file2img(file);document.body.appendChild(img);const pred = tf.tidy(() => {const x = img2x(img);return model.predict(x);});const index = pred.argMax(1).dataSync()[0];console.log(pred.argMax(1).dataSync());let predictStr = "";if (typeof CLASSES[index] == 'undefined') {predictStr = BRAND_CLASSES[index];} else {predictStr = CLASSES[index];}setTimeout(() => {alert(`预测结果:${predictStr}`);}, 0);};
};
2.4. 创建图片 tensor 格式转换库 utils.js
import * as tf from'@tensorflow/tfjs';exportfunctionimg2x(imgEl){return tf.tidy(() => {const input = tf.browser.fromPixels(imgEl).toFloat().sub(255 / 2).div(255 / 2).reshape([1, 224, 224, 3]);return input;});
}exportfunctionfile2img(f) {returnnewPromise(resolve => {const reader = new FileReader();reader.readAsDataURL(f);reader.onload = (e) => {const img = document.createElement('img');img.src = e.target.result;img.width = 224;img.height = 224;img.onload = () => resolve(img);};});
}
2.5. 打包项目并运行
parcelindex.html

2.6. 运行效果



注意:
1. 模型训练过程报错
Input to reshape is a tensor with 50176 values, but the requested shape has 150528
1.1. 原因
张量 reshape 不对,实际输入元素个数与所需矩阵元素个数不一致,就是采集过来的图片有多种图片格式,而不同格式的通道不同 (jpg3 通道,png4 通道,灰色图片 1 通道),在将图片转换 tensor 时与代码里的张量形状不匹配。
1.2. 解决方法
一种方法是删除灰色或 png 图片,其二是修改代码 tf.node.decodeImage (new Uint8Array (buffer), 3)

相关文章:

用 tensorflow.js 做了一个动漫分类的功能(二)
前言:前面已经通过采集拿到了图片,并且也手动对图片做了标注。接下来就要通过 Tensorflow.js 基于 mobileNet 训练模型,最后就可以实现在采集中对图片进行自动分类了。这种功能在应用场景里就比较多了,比如图标素材站点࿰…...

小林coding
一、图解网络 问大家,为什么要有TCP/Ip网络模型? 对于同一台设备上的进程通信,有很多种方式,比如有管道、消息队列、共享内存、信号等方式,对于不同设备上的进程通信,就需要有网络通信,而设备是…...

操作系统真相还原_第6章:完善内核
文章目录6.1 函数调用约定简介6.2 汇编语言和C语言混合编程汇编调用CC调用汇编6.3 实现打印函数流程程序编译并写入硬盘执行6.4 内联汇编简介汇编语言AT&T语法基本内联汇编扩展内联汇编6.1 函数调用约定简介 调用约定: calling conventions 调用函数时的一套约…...

SmoothNLP新词发现算法的改进实现
SmoothNLP新词发现算法的改进实现 背景介绍 新词发现也叫未登录词提取,依据 《统计自然语言处理》(宗成庆),中文分词有98%的错误来自"未登录词"。即便早就火遍大江南北的Bert也不能解决"未登录词"的Encoding问题,便索性…...

实时渲染为什么快,能不能局域网部署点量云
提到渲染很多有相关从业经验的人员可能会想起,自己曾经在电脑上渲染一个模型半天或者更长的 时间才能完成的经历。尤其是在项目比较着急的时候,这种煎熬更是难受。但现在随着实时渲染和云渲染行业的发展,通过很多方式可以提升渲染的时间和效率…...
网络游戏该如何防护ddos/cc攻击
现在做网络游戏的企业都知道服务器的安全对于我们来说很重要!互联网上面的 DDoS 攻击和 CC 攻击等等无处不在,而游戏服务器对服务器的防御能力和处理能力要求更高,普通的服务器则是比较注重各方面能力的均衡。随着游戏行业的壮大,…...
项目管理体系1-4练习题1-10答案
题目1 每周一次的项目会议上,一位团队成员表示在修订一项可交付成果时,一名销售经理对客户服务过程想出一项变更讨论,影响到整个项目,项目经理对销售参与到项目可交付成果感到吃惊,经理事先应该怎么做去阻止这些情况&…...

sHMIctrl智能屏幕使用记录
手上有个案子,“按压机器人”,功能是恒定一个力按下一定时间。 屏幕选型使用“sHMIctrl”,一下记录使用过程中遇到的问题以及解决方法。 目录 问题1:按键控件做定时触发,模拟运行时触发不了。 问题2:厂家…...

2.20 crm day01 配置路由router less使用 axios二次封装
需求: 目录 1.配置路由 2.less使用 vue2使用以下版本 3.axios二次封装 1.配置路由 1.1.1 官方链接:安装 | Vue Router npm i vue-router3.6.5 注意:vue2项目不能用vue-router四版本以上 1.2.1.创建router/index.js 在该文件中 //1.引…...

【LeetCode】剑指 Offer 10- I. 斐波那契数列 p74 -- Java Version
题目链接: 1. 题目介绍() 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下: F(0) 0, F(1) 1F(N) F(N - 1) F…...

论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks
(AAAI 23 优秀论文) 1 intro GNN的一个普遍思路是,每一层卷积层中,从邻居处聚合信息 尽管GNN有显著的进步,但是在大规模图中训练GNN会遇到各种问题: 过拟合 过拟合之后,GNN的泛化能力就被限制…...

木鱼cms系统审计小结
MuYuCMS基于Thinkphp开发的一套轻量级开源内容管理系统,专注为公司企业、个人站长提供快速建站提供解决方案。 环境搭建 我们利用 phpstudy 来搭建环境,选择 Apache2.4.39 MySQL5.7.26 php5.6.9 ,同时利用 PhpStorm 来实现对项目的调试 …...

软件测试面试-一线大厂必问的测试思维面试题
五、测试思维5.1 打电话功能怎么去测?我们会从几个方面去测试:界面、功能、兼容性、易用性、安全、性能、异常。1)界面我们会测试下是否跟界面原型图一致,考虑浏览器不同显示比例,屏幕分辨率。2)功能&#…...

企业级分布式应用服务 EDAS
什么是企业级分布式应用服务EDAS企业级分布式应用服务EDAS(Enterprise Distributed Application Service)是一个应用托管和微服务管理的云原生PaaS平台,提供应用开发、部署、监控、运维等全栈式解决方案,同时支持Spring Cloud和Ap…...

弄懂 Websocket 你得知道的这 3 点
1. WebSocket原理 WebSocket同HTTP一样也是应用层的协议,但是它是一种双向通信协议,是建立在TCP之上的。 WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket API也被W3C定为标准。 WebSocket使得客户端和服务器之间的数据交换变得更加简…...
Appium构架及工作原理
一、appium结构简单来说appium充当一个中间服务器的功能,接收来自我们代码的请求,然后发送到手机上进行执行。二、初步认识appium工作过程1.appium是c/s模式的2.appium是基于webdriver协议添加对移动设备自动化api扩展而成的,所以具有和webdr…...
软件架构中“弹性”的多种含义
在软件架构领域的中文文档、书籍中,经常可以看到“弹性”这个专业术语,但在不同的语境下含义可能会不同。 在英语中,elastic 和 resilient 两个单词都可以翻译为“弹性的”,但是它们在软件架构中代表的含义却完全不同,…...
JAVA练习57- 罗马数字转整数、位1的个数
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、题目1-罗马数字转整数 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 二、题目2-位1的个数 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 …...

C#把图片放到picturebox上的指定位置,PointToClient与PointToScreen解读
1、C#中如何把图片放到picturebox上的指定位置 构造一个跟picturebox1一样大小的Bitmap, 设置给picturebox1, 然后在上面画图 Bitmap image new Bitmap(picturebox1.Size.Width, picturebox1.Size.Height); Graphics device Graphics.FromImage(imag…...

【论文笔记】Manhattan-SDF==ZJU==CVPR‘2022 Oral
Neural 3D Scene Reconstruction with the Manhattan-world Assumption 本文工作:基于曼哈顿世界假设,重建室内场景三维模型。 1.1 曼哈顿世界假设 参考阅读文献:Structure-SLAM: Low-Drift Monocular SLAM in Indoor EnvironmentsIEEE IR…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...