当前位置: 首页 > news >正文

Meta分析在生态环境领域里的应用

  Meta分析(Meta Analysis)是当今比较流行的综合具有同一主题的多个独立研究的统计学方法,是较高一级逻辑形式上的定量文献综述。20世纪90年代后,Meta分析被引入生态环境领域的研究,并得到高度的重视和长足的发展,尤其是在生态系统对CO2浓度升高、全球变暖、O3浓度升高等的响应,以及土地利用变化对气候变化的影响等方面的应用发展迅速。

 

    为了Meta分析问题的设计、基础理论、软件操作和结果解读进行交流和互相学习,北京中科资环信息技术研究院(www.bjzkzhxx.com)特举办“Meta分析在生态环境领域里的应用直播课程”。本次培训选取专门针对生态环境问题的Meta分析软件——MetaWin进行讲解。这个软件是由生态环境领域最著名的Meta分析大师Jessica Gurevitch等人开发的,不涉及复杂的代码编写,界面简单,操作方便,有利于初学者在短时间内较系统的掌握Meta分析的基本方法。本次培训注重理论与实践相结合。理论方面,针对Meta分析效应量的选取与计算、异质性检验、数据结构、固定效应和随机效应模型、数据信息的获取与偏倚分析、数据填补等知识进行系统的梳理。实践方面,结合具体案例,针对MetaWin软件的功能逐一介绍,并对结果如何导出和解读进行全面讲解。通过本次培训,让学员掌握生态环境领域相关问题Meta分析的基本思路与基本步骤,且通过一步步讲解与上机操作,让学员具备解决实际问题的能力;

Meta分析简介

1、Meta分析简介

2、现状及发展趋势

3、基本思路

4、常用软件

数据库的构建

1、Meta分析选题

2、文献资料的搜集与初筛

3、数据库的建立

4、数据整合

Meta分析基础理论

1、效应值的选取、计算与转换

2、合并效应值的计算及异质性检验

3、非结构化数据、分组数据、连续数据

4、随机效应模型

5、广义线性模型

6、抽样检验

出版偏倚

1、图形分析法

2、秩相关检验法

3、失安全数

4、偏倚结果的矫正——“剪补法”

MetaWin 3.08

软件操作

1、效基础Meta分析

2、秩相关检验

3、剪补法

4、刀切法

5、累积Meta分析

6、分组分析/嵌套分组分析

7、Meta回归

8、广义线性模型

图形绘制

1、森林图

2、漏斗图

3、加权直方图及高斯拟合

4、正态分位数图

 

Python 数据挖掘与机器学习 (qq.com)

  近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。因此,Ai尚研修推出全新的Python数据挖掘与机器学习课程,为各领域人员量身定制课程内容,让你畅学Python编程及机器学习理论与代码实现方法,从“基础编程→机器学习→代码实现”逐步掌握。

  课程采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出分析机器学习在应用时需要掌握的经验及编程技巧。此外,课程还将通过实际案例的形式,介绍如何提炼创新点,以及如何发表高水平论文等相关经验。旨在帮助学员掌握Python编程的基础知识与技巧、特征工程(数据清洗、变量降维、特征选择、群优化算法)、回归拟合(线性回归、BP神经网络、极限学习机)、分类识别(KNN、贝叶斯分类、支持向量机、决策树、随机森林、AdaBoost、XGBoost与LightGBM等)、聚类分析(K均值、DBSCAN、层次聚类)、关联分析(关联规则、协同过滤、Apriori算法)的基本原理及Python代码实现方法。

相关文章:

Meta分析在生态环境领域里的应用

Meta分析(Meta Analysis)是当今比较流行的综合具有同一主题的多个独立研究的统计学方法,是较高一级逻辑形式上的定量文献综述。20世纪90年代后,Meta分析被引入生态环境领域的研究,并得到高度的重视和长足的发展&#x…...

PrivateLoader PPI服务发现RisePro恶意软件窃取分发信息

称为PrivateLoader的按安装付费(PPI)软件下载器服务正用于恶意软件RisePro的信息窃取。Flashpoint 于 2022 年 12月13日发现了新的窃取者,此前发现了在名为Russian Market的非法网络犯罪市场上使用该恶意软件泄露的“几组日志”。RisePro是一…...

SQL93 返回购买 prod_id 为 BR01 的产品的所有顾客的电子邮件(一)

描述你想知道订购 BR01 产品的日期,有表OrderItems代表订单商品信息表,prod_id为产品id;Orders表代表订单表有cust_id代表顾客id和订单日期order_date;Customers表含有cust_email 顾客邮件和cust_id顾客idOrderItems表prod_idorde…...

Git ---- 概述

Git ---- 概述1. 何为版本控制2. 为什么需要版本控制3. 版本控制的工具集中式版本控制工具分布式版本控制工具4. Git 简史5. Git 工作机制6. Git 和代码托管中心Git 是一个免费的、开源的分布式版本控制系统,可以快速高效地处理从小型到大型的各种项目。 Git 易于学…...

用 tensorflow.js 做了一个动漫分类的功能(二)

前言:前面已经通过采集拿到了图片,并且也手动对图片做了标注。接下来就要通过 Tensorflow.js 基于 mobileNet 训练模型,最后就可以实现在采集中对图片进行自动分类了。这种功能在应用场景里就比较多了,比如图标素材站点&#xff0…...

小林coding

一、图解网络 问大家,为什么要有TCP/Ip网络模型? 对于同一台设备上的进程通信,有很多种方式,比如有管道、消息队列、共享内存、信号等方式,对于不同设备上的进程通信,就需要有网络通信,而设备是…...

操作系统真相还原_第6章:完善内核

文章目录6.1 函数调用约定简介6.2 汇编语言和C语言混合编程汇编调用CC调用汇编6.3 实现打印函数流程程序编译并写入硬盘执行6.4 内联汇编简介汇编语言AT&T语法基本内联汇编扩展内联汇编6.1 函数调用约定简介 调用约定: calling conventions 调用函数时的一套约…...

SmoothNLP新词发现算法的改进实现

SmoothNLP新词发现算法的改进实现 背景介绍 新词发现也叫未登录词提取,依据 《统计自然语言处理》(宗成庆),中文分词有98%的错误来自"未登录词"。即便早就火遍大江南北的Bert也不能解决"未登录词"的Encoding问题,便索性…...

实时渲染为什么快,能不能局域网部署点量云

提到渲染很多有相关从业经验的人员可能会想起,自己曾经在电脑上渲染一个模型半天或者更长的 时间才能完成的经历。尤其是在项目比较着急的时候,这种煎熬更是难受。但现在随着实时渲染和云渲染行业的发展,通过很多方式可以提升渲染的时间和效率…...

网络游戏该如何防护ddos/cc攻击

现在做网络游戏的企业都知道服务器的安全对于我们来说很重要!互联网上面的 DDoS 攻击和 CC 攻击等等无处不在,而游戏服务器对服务器的防御能力和处理能力要求更高,普通的服务器则是比较注重各方面能力的均衡。随着游戏行业的壮大,…...

项目管理体系1-4练习题1-10答案

题目1 每周一次的项目会议上,一位团队成员表示在修订一项可交付成果时,一名销售经理对客户服务过程想出一项变更讨论,影响到整个项目,项目经理对销售参与到项目可交付成果感到吃惊,经理事先应该怎么做去阻止这些情况&…...

sHMIctrl智能屏幕使用记录

手上有个案子,“按压机器人”,功能是恒定一个力按下一定时间。 屏幕选型使用“sHMIctrl”,一下记录使用过程中遇到的问题以及解决方法。 目录 问题1:按键控件做定时触发,模拟运行时触发不了。 问题2:厂家…...

2.20 crm day01 配置路由router less使用 axios二次封装

需求: 目录 1.配置路由 2.less使用 vue2使用以下版本 3.axios二次封装 1.配置路由 1.1.1 官方链接:安装 | Vue Router npm i vue-router3.6.5 注意:vue2项目不能用vue-router四版本以上 1.2.1.创建router/index.js 在该文件中 //1.引…...

【LeetCode】剑指 Offer 10- I. 斐波那契数列 p74 -- Java Version

题目链接: 1. 题目介绍() 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下: F(0) 0, F(1) 1F(N) F(N - 1) F…...

论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks

(AAAI 23 优秀论文) 1 intro GNN的一个普遍思路是,每一层卷积层中,从邻居处聚合信息 尽管GNN有显著的进步,但是在大规模图中训练GNN会遇到各种问题: 过拟合 过拟合之后,GNN的泛化能力就被限制…...

木鱼cms系统审计小结

MuYuCMS基于Thinkphp开发的一套轻量级开源内容管理系统,专注为公司企业、个人站长提供快速建站提供解决方案。 ​​ ‍ 环境搭建 我们利用 phpstudy 来搭建环境,选择 Apache2.4.39 MySQL5.7.26 php5.6.9 ,同时利用 PhpStorm 来实现对项目的调试 ​…...

软件测试面试-一线大厂必问的测试思维面试题

五、测试思维5.1 打电话功能怎么去测?我们会从几个方面去测试:界面、功能、兼容性、易用性、安全、性能、异常。1)界面我们会测试下是否跟界面原型图一致,考虑浏览器不同显示比例,屏幕分辨率。2)功能&#…...

企业级分布式应用服务 EDAS

什么是企业级分布式应用服务EDAS企业级分布式应用服务EDAS(Enterprise Distributed Application Service)是一个应用托管和微服务管理的云原生PaaS平台,提供应用开发、部署、监控、运维等全栈式解决方案,同时支持Spring Cloud和Ap…...

弄懂 Websocket 你得知道的这 3 点

1. WebSocket原理 WebSocket同HTTP一样也是应用层的协议,但是它是一种双向通信协议,是建立在TCP之上的。 WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket API也被W3C定为标准。 WebSocket使得客户端和服务器之间的数据交换变得更加简…...

Appium构架及工作原理

一、appium结构简单来说appium充当一个中间服务器的功能,接收来自我们代码的请求,然后发送到手机上进行执行。二、初步认识appium工作过程1.appium是c/s模式的2.appium是基于webdriver协议添加对移动设备自动化api扩展而成的,所以具有和webdr…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。

2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...