当前位置: 首页 > news >正文

每日学术速递2.21

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理 

Subjects: cs.CV

1.T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models

标题:T2I-Adapter:学习Adapter,为Text-to-Image扩散模型挖掘更多可控能力

作者:Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, XiaoHu Qie

文章链接:https://arxiv.org/abs/2302.08453v1

项目代码:hhttps://github.com/tencentarc/t2i-adapter

摘要:

        大规模文本到图像 (T2I) 模型令人难以置信的生成能力已经证明了学习复杂结构和有意义的语义的强大能力。然而,仅仅依靠文本提示并不能充分利用模型学到的知识,尤其是在需要灵活准确的结构控制时。在本文中,我们的目标是“挖掘”出 T2I 模型隐式学习的能力,然后显式地使用它们来更细粒度地控制生成。具体来说,我们建议学习简单和小型的 T2I-Adapters 以对齐内部知识具有外部控制信号的T2I模型,同时冻结原有的大型T2I模型。这样,我们可以根据不同的条件训练各种适配器,实现丰富的控制和编辑效果。此外,所提出的T2I-Adapters具有实用价值的吸引人的特性,例如可组合性和泛化能力。大量实验表明,我们的 T2I-Adapter 具有良好的生成质量和广泛的应用范围。

2.3D Human Pose Lifting with Grid Convolution

标题:网格卷积的 3D 人体姿态提升

作者:Yangyuxuan Kang, Yuyang Liu, Anbang Yao, Shandong Wang, Enhua Wu

文章链接:https://arxiv.org/abs/2302.08760v1

项目代码:https://github.com/osvai/gridconv

摘要:

        现有的用于从 2D 单视图姿势回归 3D 人体姿势的提升网络通常是用基于图结构表示学习的线性层构建的。与它们形成鲜明对比的是,本文提出了网格卷积 (GridConv),它模仿了图像空间中常规卷积运算的智慧。GridConv 基于一种新颖的语义网格变换 (SGT),它利用二进制分配矩阵将不规则图形结构的人体姿势逐个关节映射到规则的编织状网格姿势表示,从而通过 GridConv 操作实现逐层特征学习。我们提供两种实现 SGT 的方法,包括手工设计和可学习设计。令人惊讶的是,这两种设计都取得了有希望的结果,而且可学习的设计更好,证明了这种新的提升表示学习公式的巨大潜力。为了提高 GridConv 编码上下文线索的能力,我们在卷积核上引入了一个注意力模块,使网格卷积操作依赖于输入、空间感知和网格特定。我们表明,我们的全卷积网格提升网络优于最先进的方法,在 (1) Human3.6M 的常规评估和 (2) MPI-INF-3DHP 的交叉评估下具有明显的利润率。

Subjects: cs.LG

3.MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation

标题:MiDi:用于分子生成的混合图和 3D 去噪扩散

作者:Clement Vignac, Nagham Osman, Laura Toni, Pascal Frossard

文章链接:https://arxiv.org/abs/2302.09048v1

项目代码:https://github.com/cvignac/midi

摘要:

        这项工作介绍了 MiDi,这是一种用于联合生成分子图和相应的 3D 构象异构体的扩散模型。与使用预定义规则从构象中导出分子键的现有模型相比,MiDi 使用端到端可微分模型简化了分子生成过程。实验结果证明了这种方法的好处:在复杂的 GEOM-DRUGS 数据集上,我们的模型生成的分子图明显优于基于 3D 的模型,甚至超过了直接优化键顺序有效性的专门算法。我们的代码可在 github.com/cvignac/MiDi 获得。

更多Ai资讯:公主号AiCharm
在这里插入图片描述

相关文章:

每日学术速递2.21

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models 标题:T2I-Adapter:学习Adapter,为…...

网络安全之认识挖矿木马

一、什么是挖矿木马? 比特币是以区块链技术为基础的虚拟加密货币,比特币具有匿名性和难以追踪的特点,经过十余年的发展,已成为网络黑产最爱使用的交易媒介。大多数勒索病毒在加密受害者数据后,会勒索代价高昂的比特币…...

OpenCV实战——基于分水岭算法的图像分割

OpenCV实战——基于分水岭算法的图像分割0. 前言1. 分水岭算法2. 分水岭算法直观理解3. 完整代码相关链接0. 前言 分水岭变换是一种流行的图像处理算法,用于快速将图像分割成同质区域。分水岭变换主要基于以下思想:当图像被视为拓扑浮雕时,均…...

YOLOv8模型调试记录

前言 新年伊始,ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,在还没有开源时就收到了用户的广泛关注。 值得一提的是,在博主的印象中,YOLO系…...

算法刷题打卡第97天:删除字符串两端相同字符后的最短长度

删除字符串两端相同字符后的最短长度 难度:中等 给你一个只包含字符 a,b 和 c 的字符串 s ,你可以执行下面这个操作(5 个步骤)任意次: 选择字符串 s 一个 非空 的前缀,这个前缀的所有字符都相…...

WebGPU学习(3)---使用IndexBuffer(索引缓冲区)

现在让我们将 IndexBuffer 与 VertexBuffer 一起使用。演示示例 1.准备索引数据 我们用 Uint16Array 类型来准备索引数据。我们将矩形的4个点放到 VertexBuffer 中,然后根据三角形绘制顺序,组织成 0–1–2 和 0–2–3 的结构。 const quadIndexArray …...

Java代码加密混淆工具有哪些?

在Java中,代码加密混淆工具可以帮助开发者将源代码进行加密和混淆处理,以增加代码的安全性和保护知识产权。以下是一些流行的Java代码加密混淆工具: 第一款:ProGuard:ProGuard      ProGuard:ProGuard…...

华为OD机试 - 高效的任务规划(Python) | 机试题+算法思路+考点+代码解析 【2023】

高效的任务规划 题目 你有 n 台机器编号为1-n,每台都需要完成一项工作, 机器经过配置后都能独立完成一项工作。 假设第i台机器你需要花 Bi 分钟进行设置, 然后开始运行,Ji分钟后完成任务。 现在,你需要选择布置工作的顺序,使得用最短的时间完成所有工作。 注意,不能同…...

ChatGPT写程序如何?

前言ChatGPT最近挺火的,据说还能写程序,感到有些惊讶。于是在使用ChatGPT有一周左右后,分享一下用它写程序的效果如何。1、对于矩阵,把减法操作转换加法?感觉不错的,能清晰介绍原理,然后写示例程…...

编译链接实战(9)elf符号表

文章目录符号的概念符号表探索前面介绍了elf文件的两种视图,以及两种视图的各自几个组成部分:elf文件有两种视图,链接视图和执行视图。在链接视图里,elf文件被划分成了elf 头、节头表、若干的节(section)&a…...

React合成事件的原理是什么

事件介绍 什么是事件? 事件是在编程时系统内发生的动作或者发生的事情,而开发者可以某种方式对事件做出回应,而这里有几个先决条件 事件对象 给事件对象注册事件,当事件被触发后需要做什么 事件触发 举个例子 在机场等待检票…...

Arduino-交通灯

LED交通灯实验实验器件:■ 红色LED灯:1 个■ 黄色LED灯:1 个■ 绿色LED灯:1 个■ 220欧电阻:3 个■ 面包板:1 个■ 多彩杜邦线:若干实验连线1.将3个发光二极管插入面包板,2.用杜邦线…...

【论文笔记】Manhattan-SDF == ZJU == CVPR‘2022 Oral

Neural 3D Scene Reconstruction with the Manhattan-world Assumption 本文工作:基于曼哈顿世界假设,重建室内场景三维模型。 1.1 曼哈顿世界假设 参考阅读文献:Structure-SLAM: Low-Drift Monocular SLAM in Indoor EnvironmentsIEEE IR…...

好消息!Ellab(易来博)官方微信公众号开通了!携虹科提供专业验证和监测解决方案

自1949年以来,丹麦Ellab一直通过全球范围内的验证和监测解决方案,协助全球生命科学和食品公司优化和改进其流程的质量。Ellab全面的无线数据记录仪,热电偶系统,无线环境监测系统,校准设备,软件解决方案等等…...

想要去字节跳动面试Android岗,给你这些面试知识点

关于面试字节跳动,我总结一些面试点,希望可以帮到更多的小伙伴,由于篇幅问题这里没有把全部的面试知识点问题都放上来!!目录:1.网络2.Java 基础&容器&同步&设计模式3.Java 虚拟机&内存结构…...

Java的Lambda表达式的使用

Lambda表达式是Java 8中引入的一个重要特性,它是一种简洁而强大的语法结构,可以用于替代传统的匿名内部类。 Lambda表达式的语法结构如下: (parameters) -> expression或者 (parameters) -> { statements; }其中,paramet…...

Spring MVC 源码 - HandlerMapping 组件(三)之 AbstractHandlerMethodMapping

HandlerMapping 组件HandlerMapping 组件,请求的处理器匹配器,负责为请求找到合适的 HandlerExecutionChain 处理器执行链,包含处理器(handler)和拦截器们(interceptors)handler 处理器是 Objec…...

超店有数,为什么商家要使用tiktok达人进行营销推广呢?

近几年互联网发展萌生出更多的短视频平台,而tittok这个平台在海外也越来越火爆。与此同时,很多商家也开始用tiktok进行营销推广。商家使用较多的方式就是达人营销,这种方法很常见且转化效果不错。那为什么现在这么多商家喜欢用tiktok达人进行…...

【分享】订阅万里牛集简云连接器同步企业采购审批至万里牛系统

方案场景 面临着数字化转型的到来,不少公司希望实现业务自动化需求,公司内部将钉钉作为办公系统,万里牛作为ERP系统,两个系统之前的数据都储存在各自的后台,导致数据割裂,数据互不相通,人工手动…...

C++类和对象_02----对象模型和this指针

目录C对象模型和this指针1、成员变量和成员函数分开存储1.1、空类大小1.2、非空类大小1.3、结论2、this指针概念2.1、解决名称冲突2.2、在类的非静态成员函数中返回对象本身,可使用return *this2.3、拷贝构造函数返回值为引用的时候,可进行链式编程3、空…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...