当前位置: 首页 > news >正文

想要去字节跳动面试Android岗,给你这些面试知识点

关于面试字节跳动,我总结一些面试点,希望可以帮到更多的小伙伴,由于篇幅问题这里没有把全部的面试知识点问题都放上来!!

目录:

1.网络

2.Java 基础&容器&同步&设计模式

3.Java 虚拟机&内存结构&GC&类加载&四种引用&动态代理

4.Android 基础&性能优化&Framwork

5.音视频&FFmpeg&播放器

1、网络

网络协议模型

应用层:负责处理特定的应用程序细节

HTTP、FTP、DNS

传输层:为两台主机提供端到端的基础通信

TCP、UDP

网络层:控制分组传输、路由选择等

IP

链路层:操作系统设备驱动程序、网卡相关接口

TCP 和 UDP 区别

TCP 连接;可靠;有序;面向字节流;速度慢;较重量;全双工;适用于文件传输、浏览器等

  • 全双工:A 给 B 发消息的同时,B 也能给 A 发

  • 半双工:A 给 B 发消息的同时,B 不能给 A 发

UDP 无连接;不可靠;无序;面向报文;速度快;轻量;适用于即时通讯、视频通话等

TCP 三次握手

A:你能听到吗?

B:我能听到,你能听到吗?

A:我能听到,开始吧

A 和 B 两方都要能确保:我说的话,你能听到;你说的话,我能听到。所以需要三次握手

TCP 四次挥手

A:我说完了

B:我知道了,等一下,我可能还没说完

B:我也说完了

A:我知道了,结束吧

B 收到 A 结束的消息后 B 可能还没说完,没法立即回复结束标示,只能等说完后再告诉 A :我说完了。

POST 和 GET 区别

Get 参数放在 url 中;Post 参数放在 request Body 中

Get 可能不安全,因为参数放在 url 中

HTTPS

HTTP 是超文本传输协议,明文传输;HTTPS 使用 SSL 协议对 HTTP 传输数据进行了加密

HTTP 默认 80 端口;HTTPS 默认 443 端口

优点:安全

缺点:费时、SSL 证书收费,加密能力还是有限的,但是比 HTTP 强多了

2、Java 基础&容器&同步&设计模式

StringBuilder、StringBuffer、+、String.concat 链接字符串:

  • StringBuffer 线程安全,StringBuilder 线程不安全

  • +实际上是用 StringBuilder 来实现的,所以非循环体可以直接用 +,循环体不行,因为会频繁创建 StringBuilder

  • String.concat 实质是 new String ,效率也低,耗时排序:StringBuilder < StringBuffer < concat < +

Java 泛型擦除

  • 修饰成员变量等类结构相关的泛型不会被擦除

  • 容器类泛型会被擦除

ArrayList、LinkedList

ArrayList

基于数组实现,查找快:o(1),增删慢:o(n)

初始容量为10,扩容通过 System.arrayCopy 方法

LinkedList

基于双向链表实现,查找慢:o(n),增删快:o(1)

封装了队列和栈的调用

HashMap 、HashTable

HashMap

  • 基于数组和链表实现,数组是 HashMap 的主体;链表是为解决哈希冲突而存在的

  • 当发生哈希冲突且链表 size 大于阈值时会扩容,JAVA 8 会将链表转为红黑树提高性能
    允许 key/value 为 null

HashTable

  • 数据结构和 HashMap 一样

  • 不允许 value 为 null

  • 线程安全

ArrayMap、SparseArray

ArrayMap

1.基于两个数组实现,一个存放 hash;一个存放键值对。扩容的时候只需要数组拷贝,不需要重建哈希表

2.内存利用率高

3.不适合存大量数据,因为会对 key 进行二分法查找(1000以下)

SparseArray

1.基于两个数组实现,int 做 key

2.内存利用率高

3.不适合存大量数据,因为会对 key 进行二分法查找(1000以下)

volatile 关键字

  • 只能用来修饰变量,适用修饰可能被多线程同时访问的变量

  • 相当于轻量级的 synchronized,volatitle 能保证有序性(禁用指令重排序)、可见性;后者还能保证原子性

  • 变量位于主内存中,每个线程还有自己的工作内存,变量在自己线程的工作内存中有份拷贝,线程直接操作的是这个拷贝

  • 被 volatile 修饰的变量改变后会立即同步到主内存,保持变量的可见性。

双重检查单例,为什么要加 volatile?

1.volatile想要解决的问题是,在另一个线程中想要使用instance,发现instance!=null,但是实际上instance还未初始化完毕这个问题

2.将instance =newInstance();拆分为3句话是。1.分配内存2.初始化3.将instance指向分配的内存空

3.volatile可以禁止指令重排序,确保先执行2,后执行3

wait 和 sleep

  • sleep 是 Thread 的静态方法,可以在任何地方调用

  • wait 是 Object 的成员方法,只能在 synchronized 代码块中调用,否则会报 IllegalMonitorStateException 非法监控状态异常

  • sleep 不会释放共享资源锁,wait 会释放共享资源锁

lock 和 synchronized

  • synchronized 是 Java 关键字,内置特性;Lock 是一个接口

  • synchronized 会自动释放锁;lock 需要手动释放,所以需要写到 try catch 块中并在 finally 中释放锁

  • synchronized 无法中断等待锁;lock 可以中断

  • Lock 可以提高多个线程进行读/写操作的效率

  • 竞争资源激烈时,lock 的性能会明显的优于 synchronized

3、Java 虚拟机&内存结构&GC&类加载&四种引用&动态代理

JVM

  • 定义:可以理解成一个虚构的计算机,解释自己的字节码指令集映射到本地 CPU 或 OS 的指令集,上层只需关注 Class 文件,与操作系统无关,实现跨平台

  • Kotlin 就是能解释成 Class 文件,所以可以跑在 JVM 上

JVM 内存模型

  • Java 多线程之间是通过共享内存来通信的,每个线程都有自己的本地内存

  • 共享变量存放于主内存中,线程会拷贝一份共享变量到本地内存

  • volatile 关键字就是给内存模型服务的,用来保证内存可见性和顺序性

JVM 内存结构

线程私有

1.程序计数器:记录正在执行的字节码指令地址,若正在执行 Native 方法则为空

2.虚拟机栈:执行方法时把方法所需数据存为一个栈帧入栈,执行完后出栈

3.本地方法栈:同虚拟机栈,但是针对的是 Native 方法

线程共享

1.堆:存储 Java 实例,GC 主要区域,分代收集 GC 方法会吧堆划分为新生代、老年代

2.方法区:存储类信息,常量池,静态变量等数据

GC

回收区域:只针对堆、方法区;线程私有区域数据会随线程结束销毁,不用回收

回收类型:

1.堆中的对象

  • 分代收集 GC 方法会吧堆划分为新生代、老年代

  • 新生代:新建小对象会进入新生代;通过复制算法回收对象

  • 老年代:新建大对象及老对象会进入老年代;通过标记-清除算法回收对象

2.方法区中的类信息、常量池

判断一个对象是否可被回收:

1.引用计数法

缺点:循环引用

2.可达性分析法

定义:从 GC ROOT 开始搜索,不可达的对象都是可以被回收的

GC ROOT

1.虚拟机栈/本地方法栈中引用的对象

2.方法区中常量/静态变量引用的对象

四种引用

  • 强引用:不会被回收

  • 软引用:内存不足时会被回收

  • 弱引用:gc 时会被回收

  • 虚引用:无法通过虚引用得到对象,可以监听对象的回收

ClassLoader

类的生命周期:

1.加载;2.验证;3.准备;4.解析;5.初始化;6.使用;7.卸载

类加载过程:

1.加载:获取类的二进制字节流;生成方法区的运行时存储结构;在内存中生成 Class 对象

2.验证:确保该 Class 字节流符合虚拟机要求

3.准备:初始化静态变量

4.解析:将常量池的符号引用替换为直接引用

5.初始化:执行静态块代码、类变量赋值

类加载时机

1.实例化对象

2.调用类的静态方法

3.调用类的静态变量(放入常量池的常量除外)

类加载器:负责加载 class 文件

分类:

1.引导类加载器 - 没有父类加载器

2.拓展类加载器 - 继承自引导类加载器

3.系统类加载器 - 继承自拓展类加载器

双亲委托模型:

当要加载一个 class 时,会先逐层向上让父加载器先加载,加载失败才会自己加载

为什么叫双亲?不考虑自定义加载器,系统类加载器需要网上询问两层,所以叫双亲

判断是否是同一个类时,除了类信息,还必须时同一个类加载器

优点:

  • 防止重复加载,父加载器加载过了就没必要加载了

  • 安全,防止篡改核心库类

动态代理原理及实现

  • InvocationHandler 接口,动态代理类需要实现这个接口

  • Proxy.newProxyInstance,用于动态创建代理对象

  • Retrofit 应用: Retrofit 通过动态代理,为我们定义的请求接口都生成一个动态代理对象,实现请求

4、Android 基础&性能优化&Framwork

Activity 启动模式

  • standard 标准模式

  • singleTop 栈顶复用模式,

  • 推送点击消息界面

  • singleTask 栈内复用模式,

  • 首页

  • singleInstance 单例模式,单独位于一个任务栈中

  • 拨打电话界面
    细节:

  • taskAffinity:任务相关性,用于指定任务栈名称,默认为应用包名

  • allowTaskReparenting:允许转移任务栈

View 工作原理

  • DecorView (FrameLayout)

  • LinearLayout

  • titlebar

  • Content

  • 调用 setContentView 设置的 View

ViewRoot 的 performTraversals 方法调用触发开始 View 的绘制,然后会依次调用:

  • performMeasure:遍历 View 的 measure 测量尺寸

  • performLayout:遍历 View 的 layout 确定位置

  • performDraw:遍历 View 的 draw 绘制

事件分发机制

  • 一个 MotionEvent 产生后,按 Activity -> Window -> decorView -> View 顺序传递,View 传递过程就是事件分发,主要依赖三个方法:

  • dispatchTouchEvent:用于分发事件,只要接受到点击事件就会被调用,返回结果表示是否消耗了当前事件

  • onInterceptTouchEvent:用于判断是否拦截事件,当 ViewGroup 确定要拦截事件后,该事件序列都不会再触发调用此 ViewGroup 的 onIntercept

  • onTouchEvent:用于处理事件,返回结果表示是否处理了当前事件,未处理则传递给父容器处理

  • 细节:

  • 一个事件序列只能被一个 View 拦截且消耗

  • View 没有 onIntercept 方法,直接调用 onTouchEvent 处理

  • OnTouchListener 优先级比 OnTouchEvent 高,onClickListener 优先级最低

  • requestDisallowInterceptTouchEvent 可以屏蔽父容器 onIntercet 方法的调用

Window 、 WindowManager、WMS、SurfaceFlinger

  • Window:抽象概念不是实际存在的,而是以 View 的形式存在,通过 PhoneWindow 实现

  • WindowManager:外界访问 Window 的入口,内部与 WMS 交互是个 IPC 过程

  • WMS:管理窗口 Surface 的布局和次序,作为系统级服务单独运行在一个进程

  • SurfaceFlinger:将 WMS 维护的窗口按一定次序混合后显示到屏幕上

View 动画、帧动画及属性动画

View 动画:

  • 作用对象是 View,可用 xml 定义,建议 xml 实现比较易读

  • 支持四种效果:平移、缩放、旋转、透明度

帧动画:

  • 通过 AnimationDrawable 实现,容易 OOM

属性动画:

  • 可作用于任何对象,可用 xml 定义,Android 3 引入,建议代码实现比较灵活

  • 包括 ObjectAnimator、ValuetAnimator、AnimatorSet

  • 时间插值器:根据时间流逝的百分比计算当前属性改变的百分比

  • 系统预置匀速、加速、减速等插值器

  • 类型估值器:根据当前属性改变的百分比计算改变后的属性值

  • 系统预置整型、浮点、色值等类型估值器

  • 使用注意事项:

  • 避免使用帧动画,容易OOM

  • 界面销毁时停止动画,避免内存泄漏

  • 开启硬件加速,提高动画流畅性 ,硬件加速:

  • 将 cpu 一部分工作分担给 gpu ,使用 gpu 完成绘制工作

  • 从工作分摊和绘制机制两个方面优化了绘制速度

Handler、MessageQueue、Looper

  • Handler:开发直接接触的类,内部持有 MessageQueue 和 Looper

  • MessageQueue:消息队列,内部通过单链表存储消息

  • Looper:内部持有 MessageQueue,循环查看是否有新消息,有就处理,没就阻塞

  • 如何实现阻塞:通过 nativePollOnce 方法,基于 Linux epoll 事件管理机制

  • 为什么主线程不会因为 Looper 阻塞:系统每 16ms 会发送一个刷新 UI 消息唤醒

MVC、MVP、MVVM

  • MVP:Model:处理数据;View:控制视图;Presenter:分离 Activity 和 Model

  • MVVM:Model:处理获取保存数据;View:控制视图;ViewModel:数据容器

  • 使用 Jetpack 组件架构的 LiveData、ViewModel 便捷实现 MVVM

Serializable、Parcelable

  • Serializable :Java 序列化方式,适用于存储和网络传输,serialVersionUID 用于确定反序列化和类版本是否一致,不一致时反序列化回失败

  • Parcelable :Android 序列化方式,适用于组件通信数据传递,性能高,因为不像 Serializable 一样有大量反射操作,频繁 GC

Binder

  • Android 进程间通信的中流砥柱,基于客户端-服务端通信方式

  • 使用 mmap 一次数据拷贝实现 IPC,传统 IPC:用户A空间->内核->用户B空间;mmap 将内核与用户B空间映射,实现直接从用户A空间->用户B空间

  • BinderPool 可避免创建多 Service

IPC 方式

  • Intent extras、Bundle:要求传递数据能被序列化,实现 Parcelable、Serializable ,适用于四大组件通信

  • 文件共享:适用于交换简单的数据实时性不高的场景

  • AIDL:AIDL 接口实质上是系统提供给我们可以方便实现 BInder 的工具

  • Android Interface Definition Language,可实现跨进程调用方法

  • 服务端:将暴漏给客户端的接口声明在 AIDL 文件中,创建 Service 实现 AIDL 接口并监听客户端连接请求

  • 客户端:绑定服务端 Service ,绑定成功后拿到服务端 Binder 对象转为 AIDL 接口调用

  • RemoteCallbackList 实现跨进程接口监听,同个 Binder 对象做 key 存储客户端注册的 listener

  • 监听 Binder 断开:1.Binder.linkToDeath 设置死亡代理;2. onServiceDisconnected 回调

  • Messenger:基于 AIDL 实现,服务端串行处理,主要用于传递消息,适用于低并发一对多通信

  • ContentProvider:基于 Binder 实现,适用于一对多进程间数据共享

  • Socket:TCP、UDP,适用于网络数据交换

Android 系统启动流程

  • 按电源键 -> 加载引导程序 BootLoader 到 RAM -> 执行 BootLoader 程序启动内核 -> 启动 init 进程 -> 启动 Zygote 和各种守护进程 ->

  • 启动 System Server 服务进程开启 AMS、WMS 等 -> 启动 Launcher 应用进程

5、音视频&FFmpeg&播放器

FFmpeg

基于命令方式实现了一个音视频编辑 App:

https://github.com/yhaolpz/FFmpegCmd

集成编译了 AAC、MP3、H264 编码器

播放器原理

视频播放原理:(mp4、flv)-> 解封装 -> (mp3/aac、h264/h265)-> 解码 -> (pcm、yuv)-> 音视频同步 -> 渲染播放

音视频同步:

  • 选择参考时钟源:音频时间戳、视频时间戳和外部时间三者选择一个作为参考时钟源(一般选择音频,因为人对音频更敏感,ijk 默认也是音频)

  • 通过等待或丢帧将视频流与参考时钟源对齐,实现同步

IjkPlayer 原理

集成了 MediaPlayer、ExoPlayer 和 IjkPlayer 三种实现,其中 IjkPlayer 基于 FFmpeg 的 ffplay

音频输出方式:AudioTrack、OpenSL ES;视频输出方式:NativeWindow、OpenGL ES

关于算法

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

算法一:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1 从数列中挑出一个元素,称为 “基准”(pivot),

2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

创建一个堆H[0..n-1]

把堆首(最大值)和堆尾互换

3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4. 重复步骤2,直到堆的尺寸为1

算法三:归并排序

归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置

3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4. 重复步骤3直到某一指针达到序列尾

5. 将另一序列剩下的所有元素直接复制到合并序列尾

算法四:二分查找算法

二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)

BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

1. 将n个元素每5个一组,分成n/5(上界)组。

2. 取出每一组的中位数,任意排序方法,比如插入排序。

3. 递归的调用selection算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。

4. 用x来分割数组,设小于等于x的个数为k,大于x的个数即为n-k。

5. 若i==k,返回x;若i<k,在小于x的元素中递归查找第i小的元素;若i>k,在大于x的元素中递归查找第i-k小的元素。

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索

深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

深度优先遍历图算法步骤:

1. 访问顶点v;

2. 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;

3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。

上述描述可能比较抽象,举个实例:

DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)

广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

1. 首先将根节点放入队列中。

2. 从队列中取出第一个节点,并检验它是否为目标。

如果找到目标,则结束搜寻并回传结果。

否则将它所有尚未检验过的直接子节点加入队列中。

3. 若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。

4. 重复步骤2。

6、最后面试题

需要的更多关于Android面试题与答案的可以后台私信我【面试】我这边分享给你!

面试题答案:点击这里,备注CSDN

相关文章:

想要去字节跳动面试Android岗,给你这些面试知识点

关于面试字节跳动&#xff0c;我总结一些面试点&#xff0c;希望可以帮到更多的小伙伴&#xff0c;由于篇幅问题这里没有把全部的面试知识点问题都放上来&#xff01;&#xff01;目录&#xff1a;1.网络2.Java 基础&容器&同步&设计模式3.Java 虚拟机&内存结构…...

Java的Lambda表达式的使用

Lambda表达式是Java 8中引入的一个重要特性&#xff0c;它是一种简洁而强大的语法结构&#xff0c;可以用于替代传统的匿名内部类。 Lambda表达式的语法结构如下&#xff1a; (parameters) -> expression或者 (parameters) -> { statements; }其中&#xff0c;paramet…...

Spring MVC 源码 - HandlerMapping 组件(三)之 AbstractHandlerMethodMapping

HandlerMapping 组件HandlerMapping 组件&#xff0c;请求的处理器匹配器&#xff0c;负责为请求找到合适的 HandlerExecutionChain 处理器执行链&#xff0c;包含处理器&#xff08;handler&#xff09;和拦截器们&#xff08;interceptors&#xff09;handler 处理器是 Objec…...

超店有数,为什么商家要使用tiktok达人进行营销推广呢?

近几年互联网发展萌生出更多的短视频平台&#xff0c;而tittok这个平台在海外也越来越火爆。与此同时&#xff0c;很多商家也开始用tiktok进行营销推广。商家使用较多的方式就是达人营销&#xff0c;这种方法很常见且转化效果不错。那为什么现在这么多商家喜欢用tiktok达人进行…...

【分享】订阅万里牛集简云连接器同步企业采购审批至万里牛系统

方案场景 面临着数字化转型的到来&#xff0c;不少公司希望实现业务自动化需求&#xff0c;公司内部将钉钉作为办公系统&#xff0c;万里牛作为ERP系统&#xff0c;两个系统之前的数据都储存在各自的后台&#xff0c;导致数据割裂&#xff0c;数据互不相通&#xff0c;人工手动…...

C++类和对象_02----对象模型和this指针

目录C对象模型和this指针1、成员变量和成员函数分开存储1.1、空类大小1.2、非空类大小1.3、结论2、this指针概念2.1、解决名称冲突2.2、在类的非静态成员函数中返回对象本身&#xff0c;可使用return *this2.3、拷贝构造函数返回值为引用的时候&#xff0c;可进行链式编程3、空…...

瑞芯微RK3568开发:烧录过程

进入rk3568这款芯片的烧录模式共有3种方式&#xff0c;先讲需要准备的环境要求。 一、软硬件环境 1、配套sdk版本的驱动DriverAssitant_vx.x.x和RKDevTool_Release_vx.x&#xff0c;版本不对应可能无法烧录&#xff0c;建议直接在sdk压缩包里获取&#xff1b; 2、如果正确安…...

【数据结构】——树和二叉树的概念

目录 1.树概念及结构 1.1树的概念 1.2 树的相关性质 1.3 树的表示 1.4 树在实际中的运用&#xff08;表示文件系统的目录树结构&#xff09; 2.二叉树概念及结构 2.1二叉树概念 2.2 特殊的二叉树 2.3 二叉树的性质 1.树概念及结构 1.1树的概念 树是一种非线性的数据结构…...

Meta分析在生态环境领域里的应用

Meta分析&#xff08;Meta Analysis&#xff09;是当今比较流行的综合具有同一主题的多个独立研究的统计学方法&#xff0c;是较高一级逻辑形式上的定量文献综述。20世纪90年代后&#xff0c;Meta分析被引入生态环境领域的研究&#xff0c;并得到高度的重视和长足的发展&#x…...

PrivateLoader PPI服务发现RisePro恶意软件窃取分发信息

称为PrivateLoader的按安装付费&#xff08;PPI&#xff09;软件下载器服务正用于恶意软件RisePro的信息窃取。Flashpoint 于 2022 年 12月13日发现了新的窃取者&#xff0c;此前发现了在名为Russian Market的非法网络犯罪市场上使用该恶意软件泄露的“几组日志”。RisePro是一…...

SQL93 返回购买 prod_id 为 BR01 的产品的所有顾客的电子邮件(一)

描述你想知道订购 BR01 产品的日期&#xff0c;有表OrderItems代表订单商品信息表&#xff0c;prod_id为产品id&#xff1b;Orders表代表订单表有cust_id代表顾客id和订单日期order_date&#xff1b;Customers表含有cust_email 顾客邮件和cust_id顾客idOrderItems表prod_idorde…...

Git ---- 概述

Git ---- 概述1. 何为版本控制2. 为什么需要版本控制3. 版本控制的工具集中式版本控制工具分布式版本控制工具4. Git 简史5. Git 工作机制6. Git 和代码托管中心Git 是一个免费的、开源的分布式版本控制系统&#xff0c;可以快速高效地处理从小型到大型的各种项目。 Git 易于学…...

用 tensorflow.js 做了一个动漫分类的功能(二)

前言&#xff1a;前面已经通过采集拿到了图片&#xff0c;并且也手动对图片做了标注。接下来就要通过 Tensorflow.js 基于 mobileNet 训练模型&#xff0c;最后就可以实现在采集中对图片进行自动分类了。这种功能在应用场景里就比较多了&#xff0c;比如图标素材站点&#xff0…...

小林coding

一、图解网络 问大家&#xff0c;为什么要有TCP/Ip网络模型&#xff1f; 对于同一台设备上的进程通信&#xff0c;有很多种方式&#xff0c;比如有管道、消息队列、共享内存、信号等方式&#xff0c;对于不同设备上的进程通信&#xff0c;就需要有网络通信&#xff0c;而设备是…...

操作系统真相还原_第6章:完善内核

文章目录6.1 函数调用约定简介6.2 汇编语言和C语言混合编程汇编调用CC调用汇编6.3 实现打印函数流程程序编译并写入硬盘执行6.4 内联汇编简介汇编语言AT&T语法基本内联汇编扩展内联汇编6.1 函数调用约定简介 调用约定&#xff1a; calling conventions 调用函数时的一套约…...

SmoothNLP新词发现算法的改进实现

SmoothNLP新词发现算法的改进实现 背景介绍 新词发现也叫未登录词提取&#xff0c;依据 《统计自然语言处理》(宗成庆)&#xff0c;中文分词有98%的错误来自"未登录词"。即便早就火遍大江南北的Bert也不能解决"未登录词"的Encoding问题&#xff0c;便索性…...

实时渲染为什么快,能不能局域网部署点量云

提到渲染很多有相关从业经验的人员可能会想起&#xff0c;自己曾经在电脑上渲染一个模型半天或者更长的 时间才能完成的经历。尤其是在项目比较着急的时候&#xff0c;这种煎熬更是难受。但现在随着实时渲染和云渲染行业的发展&#xff0c;通过很多方式可以提升渲染的时间和效率…...

网络游戏该如何防护ddos/cc攻击

现在做网络游戏的企业都知道服务器的安全对于我们来说很重要&#xff01;互联网上面的 DDoS 攻击和 CC 攻击等等无处不在&#xff0c;而游戏服务器对服务器的防御能力和处理能力要求更高&#xff0c;普通的服务器则是比较注重各方面能力的均衡。随着游戏行业的壮大&#xff0c;…...

项目管理体系1-4练习题1-10答案

题目1 每周一次的项目会议上&#xff0c;一位团队成员表示在修订一项可交付成果时&#xff0c;一名销售经理对客户服务过程想出一项变更讨论&#xff0c;影响到整个项目&#xff0c;项目经理对销售参与到项目可交付成果感到吃惊&#xff0c;经理事先应该怎么做去阻止这些情况&…...

sHMIctrl智能屏幕使用记录

手上有个案子&#xff0c;“按压机器人”&#xff0c;功能是恒定一个力按下一定时间。 屏幕选型使用“sHMIctrl”&#xff0c;一下记录使用过程中遇到的问题以及解决方法。 目录 问题1&#xff1a;按键控件做定时触发&#xff0c;模拟运行时触发不了。 问题2&#xff1a;厂家…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...