当前位置: 首页 > news >正文

2021 ICPC 昆明 I Mr Main and Windmills(直线与线段的交点)

2021 ICPC 昆明 I Mr. Main and Windmills(直线与线段的交点)

I Mr. Main and Windmills

大意:给出一条线段 , 一个人从线段的起点走到线段的终点 , 线段的一侧有若干风车 , 当前的人在线段上的每一个位置观察风车都会得到一个顺序 。多次询问第 i 号风车被观察的位置第k次改变时人在线段上的位置。

思路:不难发现 , 两个风车交换位置当且仅当人走过 两风车所在直线与线段交点的时候 , 两两枚举风车求直线与线段交点 , 然后根据和起始点的距离排序后根据要求输出即可。

易错点:这里线段与直线求交会有一个易错点。

如果先求 线段所在直线与风车直线的交点(line_make_point) , 然后再判断交点是否在线段上(point_on_segment) , 这样误差会巨大。因为直线求交会有除法 , 求出的交点存在误差 ,然后判断点在线段上时会用到叉积 , 叉积的几何意义就是形成三角形的面积 , 如果线段特别特别长 , 叉积就会很大 , 从而在这里产生错误。

if(!line_make_point(l , r , now)) continue;
if(!point_on_segment(now , st , ed)) continue;

解决方法:

1. 对于求交问题 , 先判断在求交

对应在这里 , 就可以先判断线段和直线是否相交(toleft) , 相交求交点即可 , 这样是不会有判断误差的产生的。

if(toleft(st , p[i] , p[j]) * toleft(ed , p[i] , p[j]) > 0) continue;
line_make_point(l , r , now);

2. double 换成 long double , 容限(eps) 调大即可

这里推荐第一种 , 第一种更规范

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 1e3 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;//--------------------------------------------------------------
const double eps = 1e-9;
const double pi = acos(-1);
inline double sqr(double x) {return x * x;} //平方
int sign(double x){if(fabs(x) < eps) return 0;if(x > 0) return 1;return -1;
}//符号
struct point{double x , y;point(){}point(double a , double b) : x(a) , y(b){}friend point operator + (const point &a , const point &b){return point(a.x + b.x , a.y + b.y);}friend point operator - (const point &a , const point &b){return point(a.x - b.x , a.y - b.y);}friend bool operator == (const point &a , const point &b){return !sign(a.x - b.x) && !sign(a.y - b.y);}friend point operator * (const point &a , const double &b){return point(a.x * b , a.y * b);}friend point operator * (const double &a , const point &b){return point(a * b.x , a * b.y);}friend point operator / (const point &a , const double &b){return point(a.x / b , a.y / b);}//向量模长 double norm(){ return sqrt(sqr(x) + sqr(y));}
}; struct line{point a , b;line(){}line(point x , point y) : a(x) , b(y) {}
};double det(const point &a , const point &b){return a.x * b.y - a.y * b.x;
}//叉积 判断两点共线 double dot(const point &a , const point &b){return a.x * b.x + a.y * b.y;
}//点积double dist(const point &a , const point &b){return (a - b).norm();
}//两点距离point rotate_point(const point &a , const point &p , double A){double tx = p.x - a.x , ty = p.y - a.y;return point(a.x + tx * cos(A) - ty * sin(A) , a.y + tx * sin(A) + ty * cos(A));
}// p 点 绕 a 点逆时针旋转 A 弧度int toleft(const point &p , const point &a , const point &b) {return sign(det(b - a , p - a));// 1 左 0 上 -1 右
}//只适用凸多边形//判断点 p 是否在线段 st 上(包括端点)
bool point_on_segment(point p , point s , point t){return sign(det(p - s , t - s)) == 0 && sign(dot(p - s , p - t)) <= 0;
}bool parallel(line a , line b){return !sign(det(a.a - a.b , b.a - b.b));
}bool line_make_point(line a , line b , point &res){if(parallel(a , b)) return 0;double s1 = det(a.a - b.a , b.b - b.a);double s2 = det(a.b - b.a , b.b - b.a);res = (s1 * a.b - s2 * a.a) / (s1 - s2);return 1;
}
//--------------------------------------------------------------
//--------------------------------------------------------------int n , m;
point st , ed , p[N] , now;
double x , y;
int h , k;vector<tuple<double , double , double>>ans[N];signed main(){IOScout << fixed << setprecision(10);cin >> n >> m;cin >> x >> y;st = point{x , y};cin >> x >> y;ed = point{x , y};for(int i = 1 ; i <= n ; i ++){cin >> x >> y;p[i] = point{x , y};}line l = line{st , ed};for(int i = 1 ; i <= n ; i ++){for(int j = i + 1 ; j <= n ; j ++){line r = line{p[i] , p[j]};if(toleft(st , p[i] , p[j]) * toleft(ed , p[i] , p[j]) > 0) continue;line_make_point(l , r , now);ans[i].emplace_back(now.x , now.y , dist(now , st));ans[j].emplace_back(now.x , now.y , dist(now , st));} }for(int i = 1 ; i <= n ; i ++) sort(ans[i].begin() , ans[i].end() , [&](tuple<double , double , double> a , tuple<double , double , double> b){return get<2>(a) < get<2>(b);});for(int i = 1 ; i <= m ; i ++){cin >> h >> k;if(ans[h].size() < k){cout << "-1\n";}else{auto [x , y , z] = ans[h][k - 1];cout << x << " " << y << "\n";}}return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

相关文章:

2021 ICPC 昆明 I Mr Main and Windmills(直线与线段的交点)

2021 ICPC 昆明 I Mr. Main and Windmills(直线与线段的交点) I Mr. Main and Windmills 大意&#xff1a;给出一条线段 &#xff0c; 一个人从线段的起点走到线段的终点 &#xff0c; 线段的一侧有若干风车 &#xff0c; 当前的人在线段上的每一个位置观察风车都会得到一个顺…...

SpringCloudAlibaba Gateway(一)简单集成

SpringCloudAlibaba Gateway(一)简单集成 随着服务模块的增加&#xff0c;一定会产生多个接口地址&#xff0c;那么客户端调用多个接口只能使用多个地址&#xff0c;维护多个地址是很不方便的&#xff0c;这个时候就需要统一服务地址。同时也可以进行统一认证鉴权的需求。那么服…...

逻辑回归(Logistic Regression)

1.分类问题 在分类问题中&#xff0c;你要预测的变量 y是离散的值&#xff0c;我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法&#xff0c;这是目前最流行使用最广泛的一种学习算法。 在分类问题中&#xff0c;我们尝试预测的是结果是否属于某一个类&#xff08;例…...

Leetcode129. 求根到叶子节点数字之和

力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 给你一个二叉树的根节点 root &#xff0c;树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表一个数字&#xff1a; 例如&#xff0c;从根节点到叶子节点的路径 1 ->…...

0401hive入门-hadoop-大数据学习.md

文章目录 1 Hive概述2 Hive部署2.1 规划2.2 安装软件 3 Hive体验4 Hive客户端4.1 HiveServer2 服务4.2 DataGrip 5 问题集5.1 Could not open client transport with JDBC Uri 结语 1 Hive概述 Apache Hive是一个开源的数据仓库查询和分析工具&#xff0c;最初由Facebook开发&…...

springboot项目打包优化,将所有第三方包单独打包至lib目录

在pom.xml中配置以下代码&#xff0c;随后使用mvnw clean package打包 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><configuration><!-- 主…...

使用 Ccrypt 在 Linux 中加密/解密文件

Ccrypt 是一个用于数据加密和解密的命令行工具。Ccrypt 基于 Rijndael 密码,与 AES 标准中使用的密码相同。另一方面,在 AES 标准中,使用 128 位块大小,而 ccrypt 使用 256 位块大小。Ccrypt 通常使用 .cpt 文件扩展名来表示加密文件。 它是一个轻量级的工具,该工具的安装…...

poi3.10 excel xls 设置列宽行高背景色加粗

poi excel xls格式 设置列宽行高背景色加粗HSSFWorkbook wb new HSSFWorkbook(); Sheet sheet wb.createSheet("sheet1");HSSFCellStyle style wb.createCellStyle(); style.setFillForegroundColor(IndexedColors.LIGHT_TURQUOISE.getIndex());//背景色 style.se…...

揭秘分布式文件系统大规模元数据管理机制——以Alluxio文件系统为例

作者简介&#xff1a; 辭七七&#xff0c;目前大&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; 七七的闲谈 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f49…...

微信小程序onReachBottom事件使用

在微信小程序中&#xff0c;onReachBottom事件用于监听页面滚动到页面底部的时候触发的事件。当用户滑动页面到底部时&#xff0c;可以通过监听该事件来执行相应的操作。 要使用onReachBottom事件&#xff0c;需要在对应的页面或组件中定义一个函数&#xff0c;并在Page或Comp…...

数据孤岛的突破口在哪里?

国务院于2021年12月发布的《“十四五”数字经济发展规划》中提到&#xff0c;我国数字经济发展中数字鸿沟问题未得到有效解决&#xff0c;各行业应充分发挥数据要素作用&#xff0c;加强数据治理和监管工作。“数据孤岛”问题虽早已被提出&#xff0c;但至今仍然存在&#xff0…...

【送书活动】全网超50万粉丝的Linux大咖良许,出书了!

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…...

深入浅出学Verilog--基础语法

1、简介 Verilog的语法和C语言非常类似&#xff0c;相对来说还是非常好学的。和C语言一样&#xff0c;Verilog语句也是由一连串的令牌&#xff08;Token&#xff09;组成。1个令牌必须由1个或1个以上的字符&#xff08;character&#xff09;组成&#xff0c;令牌可以是&#x…...

基于Spring、SpringMVC、Mybatis的超市管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SSM的超市订单管理系统,java项目。 …...

spring中的@Configuration配置类和@Component

在Spring的开发工作中&#xff0c;基本都会使用配置注解&#xff0c;尤其以Component及Configuration为主&#xff0c;当然在Spring中还可以使用其他的注解来标注一个类为配置类&#xff0c;这是广义上的配置类概念&#xff0c;但是这里我们只讨论Component和Configuration&…...

企业架构LNMP学习笔记29

Nginx负载均衡配置&#xff1a; 架构分析&#xff1a; 1&#xff09;用户访问请求Nginx负载均衡服务器&#xff1b; 2&#xff09;Nginx负载均衡服务器再分发请求到Web服务器。 实际配置负载均衡&#xff0c;只需修改作为负载均衡服务器的Nginx即可&#xff0c;当前架构中的…...

Ubuntu14.04离线安装gcc-5.3.0

离线安装gcc 下载gcc安装包下载相关依赖下载gmp下载mpfr下载mpc 编译、安装gcc配置环境变量 拉取的一个虚拟机使用的系统是Ubuntu14.04&#xff0c;gcc版本是4.8.4&#xff0c;由于gcc版本较低&#xff0c;不太支持Libtorch&#xff0c;于是搜寻了许多办法来解决这个问题&#…...

axios返回几种数据格式? 其中Blob返回时的size是什么意思?

axios返回几种数据格式? 其中Blob返回时的size是什么意思&#xff1f; 1、字符串&#xff08;String&#xff09;&#xff1a;服务器可以返回纯文本或HTML内容&#xff0c;Axios会将其作为字符串返回。 2、JSON&#xff08;JavaScript Object Notation&#xff09;&#xff…...

【GO语言基础】基本数据类型

系列文章目录 【Go语言学习】ide安装与配置 【GO语言基础】前言 【GO语言基础】变量常量 【GO语言基础】数据类型 文章目录 系列文章目录数据类型数值型&#xff1a;整数类型&#xff1a;浮点数类型&#xff1a; 字符型-布尔型-字符串零值转义字符 常用类型转换运算符总结 数据…...

【Python】OpenCV立体相机配准与三角化代码实现

下面的介绍了使用python和OpenCV对两个相机进行标定、配准,同时实现人体关键点三角化的过程 import cv2 as cv import glob import numpy as np import matplotlib.pyplot as pltdef calibrate_camera(images_folder):images_names = glob.glob(images_folder...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...