当前位置: 首页 > news >正文

算法 数据结构 递归冒泡算法 java冒泡算法 优化递归冒泡 数据结构(九)

 使用递归算法实现冒泡:

 

package com.nami.algorithm.study.day06;import java.util.Arrays;/*** beyond u self and trust u self.** @Author: lbc* @Date: 2023-09-05 15:36* @email: 594599620@qq.com* @Description: keep coding*/
public class BubbleSort2 {//    public static void sort(int[] target, int num) {
//        if (num == 0) {
//            return;
//        }
//        bubble(target, num-1);
//
//        sort(target, num-1);
//    }
//
//    private static void bubble(int[] target, int j) {
//        for (int i = 0; i < j; i++) {
//            if (target[i] > target[i + 1]) {
//                int temp = target[i];
//                target[i] = target[i+1];
//                target[i+1] = temp;
//            }
//        }
//    }public static void sort(int[] target) {bubble(target, target.length -1 );}private static void bubble(int[] target, int j) {if (j == 0) {return;}for (int i = 0; i < j; i++) {if (target[i] > target[i + 1]) {int temp = target[i];target[i] = target[i+1];target[i+1] = temp;}}bubble(target, j - 1);}public static void main(String[] args) {int[] test = new int[]{1, 54, 234, 675, 32432, 23, 78, 459, 354, 9, 344, 22, 46, 85, 236, 3278, 245, 83, 154, 2, 1, 34, 73, 23};int[] test2= new int[] {2,4,7,3,2,1};
//        sort(test, test.length);sort(test2);System.out.println(Arrays.toString(test2));}}

优化数组稳定得情况, 减少无意义遍历,新增参数x, 标识是否发生了挪动,递归时使用x索引,非常巧妙。递归妙

package com.nami.algorithm.study.day06;import java.util.Arrays;/*** beyond u self and trust u self.** @Author: lbc* @Date: 2023-09-05 15:36* @email: 594599620@qq.com* @Description: keep coding*/
public class BubbleSort {public static void sort(int[] target) {bubble(target, target.length -1 );}private static void bubble(int[] target, int j) {if (j == 0) {return;}// 变换标识 索引iint x = 0;for (int i = 0; i < j; i++) {if (target[i] > target[i + 1]) {int temp = target[i];target[i] = target[i+1];target[i+1] = temp;x = i;}}bubble(target, x);}public static void main(String[] args) {int[] test = new int[]{1, 54, 234, 675, 32432, 23, 78, 459, 354, 9, 344, 22, 46, 85, 236, 3278, 245, 83, 154, 2, 1, 34, 73, 23};int[] test2= new int[] {2,4,7,3,2,1};
//        sort(test, test.length);sort(test2);System.out.println(Arrays.toString(test2));}}

相关文章:

算法 数据结构 递归冒泡算法 java冒泡算法 优化递归冒泡 数据结构(九)

使用递归算法实现冒泡&#xff1a; package com.nami.algorithm.study.day06;import java.util.Arrays;/*** beyond u self and trust u self.** Author: lbc* Date: 2023-09-05 15:36* email: 594599620qq.com* Description: keep coding*/ public class BubbleSort2 {// p…...

【计算机视觉 | 目标检测】目标检测常用数据集及其介绍(十五)

文章目录 一、STN PLAD (STN Power Line Assets Dataset)二、Satlas三、Street Dataset四、UAVVaste五、UDA-CH (Unsupervised Domain Adaptation on Cultural Heritage)六、USB (Universal-Scale Object Detection Benchmark)七、VEDAI (Vehicle Detection in Aerial Imagery)…...

洛谷P8814:解密 ← CSP-J 2022 复赛第2题

【题目来源】https://www.luogu.com.cn/problem/P8814https://www.acwing.com/problem/content/4732/【题目描述】 给定一个正整数 k&#xff0c;有 k 次询问&#xff0c;每次给定三个正整数 ni&#xff0c;ei&#xff0c;di&#xff0c;求两个正整数 pi&#xff0c;qi&#xf…...

Flutter实现CombineExecutor进行多个异步分组监听,监听第一个异步执行的开始和最后一个异步执行结束时机。

1.场景 我们在调用接口时&#xff0c;很多时候会同时调用多个接口&#xff0c;接口都是异步执行&#xff0c;我们很难知道调用的多个接口哪个会最后执行完成&#xff0c;我们有时候需要对最后一个接口执行完成的时机监听&#xff0c;所以基于该需求&#xff0c;设计了CombineE…...

2023 年最新Java 毕业设计选题题目参考,500道 Java 毕业设计题目,值得收藏

大家好&#xff0c;我是程序员徐师兄&#xff0c;最近有很多同学咨询&#xff0c;说毕业设计了&#xff0c;不知道选怎么题目好&#xff0c;有哪些是想需要注意的。 确实毕设选题实际上对很多同学来说一个大坑&#xff0c; 每年挖坑给自己跳的人太多太多&#xff0c;选题选得好…...

Mac电脑其他文件占用超过一大半的内存如何清理?

mac的存储空间时不时会提示内存已满&#xff0c;查看内存占用比例最大的居然是「其他文件」&#xff0c;「其他文件」是Mac无法识别的格式文件或应用插件扩展等等...如果你想要给Mac做一次彻底的磁盘空间清理&#xff0c;首当其冲可先对「其他文件」下手&#xff0c;那么我们该…...

geopandas 笔记: datasets 数据集

geopandas 自带的几个数据集 1 世界各个国家 import geopandas as gpd import pandas as pdpd.set_option(display.max_rows,None) gpd.read_file(gpd.datasets.get_path(naturalearth_lowres)) pop_est人口数量continent国家所在的大陆name国家的名称iso_a3国家的三个字母的…...

长胜证券:三大拐点共振 看好智能驾驶新一轮行情

摘要 【长胜证券&#xff1a;三大拐点共振 看好智能驾驭新一轮行情】长胜证券研报指出&#xff0c;全球共振&#xff0c;国内智驾商场正迎来三大拐点&#xff1a;1&#xff09;技能上&#xff0c;“BEV Transformer数据闭环”新架构2023年开端上车&#xff0c;使得不依靠高精地…...

AIGC专栏5——EasyPhoto AI写真照片生成器 sd-webui插件介绍、安装与使用

AIGC专栏5——EasyPhoto AI写真照片生成器 插件安装与使用 学习前言源码下载地址技术原理储备&#xff08;SD/Control/Lora&#xff09;StableDiffusionControlNetLora EasyPhoto插件简介EasyPhoto插件安装安装方式一&#xff1a;Webui界面安装 &#xff08;需要良好的网络&…...

【Python程序设计】 工厂模式【07/8】

一、说明 我们探索数据工程中使用的设计模式 - 软件设计中常见问题的可重用解决方案。 以下文章是有关 Python 数据工程系列文章的一部分&#xff0c;旨在帮助数据工程师、数据科学家、数据分析师、机器学习工程师或其他刚接触 Python 的人掌握基础知识。 迄今为止&#xff0c;…...

PHP8的多维数组-PHP8知识详解

今天分享的是php8的数组中的多维数组&#xff0c;主要内容有&#xff1a;多维数组的概念、创建和输出二维数组、创建和输出三维数组。 1、多维数组的概念 多维数组是包含一个或多个数组的数组。在多维数组中&#xff0c;主数组中的每一个元素也可以是一个数组&#xff0c;子数…...

【【STM32--28--IO引脚的复用功能】】

STM32–28–IO引脚的复用功能 STM32的IO复用功能 何为复用? 我们先了解一下何为通用 IO端口的输入或输出是由GPIO外设控制&#xff0c;我们称之为通用 复用&#xff1a; IO端口的输入或者是输出是由其他非GPIO外设控制就像经常说的USART 由 DR寄存器进行输出 STM32的IO复用功…...

CodeJock Active-X / COM v22.1.0 Crack

CodeJock Active-X / COM v22.1.0--这个支持 Unicode 啦&#xff0c; Unicode Unicode 创建专业应用程序&#xff0c;其中包含一整套高度可定制的用户界面组件&#xff0c;包括 Visual Studio 风格的对接窗格和 Office 风格的功能区、工具栏和菜单&#xff0c;为您的应用程序…...

mac通过docker搭建elasticsearch:8.9.2以及kibana:8.9.2

1.elasticsearch.yml配置修改&#xff1a; cluster.name: "docker-cluster" network.host: 0.0.0.0 http.port: 9200 #discovery.seed_hosts: ["172.17.0.2"]#----------------------- BEGIN SECURITY AUTO CONFIGURATION ----------------------- # # T…...

python实现排列组合代码

def combination(n, c, com1, limit0, per[]):for pos in range(limit, n):t per [pos]if len(set(t)) len(t):if len(t) c:yield [pos, ]else:for result in combination(n, c, com, com * pos, per [pos, ]):yield [pos, ] resultprint("排列&#xff1a;") …...

盲盒小程序开发方案

盲盒游戏作为一种富有趣味性和收藏价的虚拟盲盒产品&#xff0c;近年来在游戏市场中备受关注。本文将深入探讨盲盒游戏的开发方案&#xff0c;从市场趋势分析、用户体验设计、商业模式选择等多个维度&#xff0c;为开发者提供业且有深度的思考&#xff0c;以帮助他们在盲盒游戏…...

Mysql锁

文章目录 1. 概述2. 分类3. 全局锁4. 表级锁5. 行级锁 1. 概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中&#xff0c;除传统的计算资源&#xff08;CPU、RAM、I/O&#xff09;的争用以外&#xff0c;数据也是一种供许多用户共享的资源。如何保证数据并…...

Kubernetes(k8s)安装NFS动态供给存储类并安装KubeSphere

Kubernetes安装NFS动态供给存储类并安装KubeSphere KubeSphere介绍环境准备KubeSphereNFS动态供给 安装NFS动态供给搭建NFS下载动态供给驱动修改驱动文件安装动态供给 安装KubeSphere下载KubeSphere的yaml资源清单文件安装KubeSphere 使用KubeSphere部署应用创建项目部署MySQL …...

机器学习笔记 - 【机器学习案例】基于KerasCV的预训练模型自定义多头+多标签预测

一、KerasCV KerasCV 是一个模块化计算机视觉组件库,可与 TensorFlow、JAX 或 PyTorch 原生配合使用。这些模型、层、指标、回调等基于Keras Core构建,可以在任何框架中进行训练和序列化,并在另一个框架中重复使用,而无需进行昂贵的迁 KerasCV 可以理解为 Keras API 的水平…...

Linux Debian常用70条经典运维命令和使用案例

一、前言 今天分享一些Linux Debian运维方法以及常用命令 二、运维方法 Linux Debian系统的运维涉及到各种任务&#xff0c;包括系统安装、配置、更新和维护&#xff0c;以及故障排查和性能优化等。下面是一些常用的运维命令&#xff1a; 1、以下是部分命令注释 1. apt-ge…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...