当前位置: 首页 > news >正文

day-50 代码随想录算法训练营(19)动态规划 part 11

123.买卖股票的最佳时机|||

分析:只能买卖两次,就是说有五个状态:
  • 没有买过
  • 第一次买入
  • 第一次卖出
  • 第二次买入
  • 第二次卖出
思路:二维数组,记录五个状态
  • 1.dp存储:dp[i][1] 第一次买入   dp[i][2] 第一次卖出  dp[i][3] 第二次买入  dp[i][4] 第二次卖出
  • 2.dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i])
    • dp[i][2]=max(dp[i-1][2],dp[i-1][1]+prices[i])
    • dp[i][3]=max(dp[i-1][3],dp[i-1][2]-prices[i])
    • dp[i][4]=max(dp[i-1][4],dp[i-1][3]+prices[i])
  • 3.初始化:dp[0][1]=-prices[0]    dp[0][3]=-prices[0]
  • 4.遍历顺序:1~n
class Solution {
public:int maxProfit(vector<int>& prices) {int n=prices.size();vector<vector<int>> dp(n,vector<int>(5,0));dp[0][1]=-prices[0];dp[0][3]=-prices[0];for(int i=1;i<n;i++){dp[i][0]=dp[i-1][0];//第一天不持有dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);dp[i][2]=max(dp[i-1][2],dp[i-1][1]+prices[i]);dp[i][3]=max(dp[i-1][3],dp[i-1][2]-prices[i]);dp[i][4]=max(dp[i-1][4],dp[i-1][3]+prices[i]);}return dp[n-1][4];}
};

188.买卖股票的最佳时机IV

分析:买卖几次成了变量
思路:
  • 1.dp存储:2k+1个状态的买卖金额
  • 2.动态转移方程(递推式):
    • j奇数:dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]-prices[i])
    •  j偶数:dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+prices[i])
  • 3.初始化:j奇数:dp[i][j]=-prices[0]
  • 4.遍历顺序:1-n
class Solution {
public:int maxProfit(int k, vector<int>& prices) {int n=prices.size();int m=k*2;vector<vector<int>>dp(n,vector<int>(m+1,0));for(int i=1;i<=m;i+=2) dp[0][i]=-prices[0]; //初始化for(int i=1;i<n;i++){dp[i][0]=dp[i-1][0];//第一天不持有for(int j=1;j<m+1;j++){if(j%2!=0) dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]-prices[i]);//第j天持有else dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+prices[i]);//第j天卖出}}return dp[n-1][m];}
};

309.买卖股票的最佳时机含冷冻期

分析:现在有四种状态:买入股票 冷冻期后没买入   卖出股票   冷冻期
思路:dp存储四种状态
  • 1.dp存储:四种状态
  • 2.动态转移方程(递推式):
    • dp[i][0]=max(dp[i-1][0],max(dp[i-1][1]-prices[i],dp[i-1][3]-prices[i]))
    • dp[i][1]=max(dp[i-1][1],dp[i-1][3])
    • dp[i][2]=dp[i-1][0]+prices[i]
    • dp[i][3]=dp[i-1][2]
  • 3.初始化:dp[0][0]=-prices[0]
  • 4.遍历顺序:1~n
class Solution {
public:int maxProfit(vector<int>& prices) {int n=prices.size();vector<vector<int>>dp(n,vector<int>(4,0));dp[0][0]=-prices[0];for(int i=1;i<n;i++){dp[i][0]=max(dp[i-1][0],max(dp[i-1][1]-prices[i],dp[i-1][3]-prices[i]));//持有dp[i][1]=max(dp[i-1][1],dp[i-1][3]);//冷冻期后面不持有dp[i][2]=dp[i-1][0]+prices[i];//卖出dp[i][3]=dp[i-1][2];//冷冻期}return max(dp[n-1][3],max(dp[n-1][1],dp[n-1][2]));//最大值一定不持有}
};

相关文章:

day-50 代码随想录算法训练营(19)动态规划 part 11

123.买卖股票的最佳时机||| 分析&#xff1a;只能买卖两次&#xff0c;就是说有五个状态&#xff1a; 没有买过第一次买入第一次卖出第二次买入第二次卖出 思路&#xff1a;二维数组&#xff0c;记录五个状态 1.dp存储&#xff1a;dp[i][1] 第一次买入 dp[i][2] 第一次卖…...

自定义权限指令与防止连点指令

1.权限指令 // 注册一个全局自定义权限指令 v-permission Vue.directive(permission, {inserted: function(el, binding, vnode) {const {value} binding; // 指令传的值// user:edit:phone,sysData:sampleconst permissions [user:edit:address, sysData:entrust, sysData:…...

UE5、CesiumForUnreal实现瓦片坐标信息图层效果

文章目录 1.实现目标2.实现过程2.1 原理简介2.2 cesium-native改造2.3 CesiumForUnreal改造2.4 运行测试3.参考资料1.实现目标 参考CesiumJs的TileCoordinatesImageryProvider,在CesiumForUnreal中也实现瓦片坐标信息图层的效果,便于后面在调试地形和影像瓦片的加载调度等过…...

PostgreSQL执行计划

1. EXPLAIN命令 1)PostgreSQL中EXPLAIN命令的语法格式: postgres# \h explain Command: EXPLAIN Description: show the execution plan of a statement Syntax: EXPLAIN [ ( option [, ...] ) ] statement EXPLAIN [ ANALYZE ] [ VERBOSE ] statementwhere option can be…...

【2023 睿思芯科 笔试题】~ 题目及参考答案

文章目录 1. 题目 & 答案单选题编程题问题1&#xff1a;解析1&#xff1a;问题2&#xff1a;解析2&#xff1a; 声明 名称如标题所示&#xff0c;希望大家正确食用&#xff08;点赞转发评论&#xff09; 本次笔试题以两种形式考察的&#xff0c;分别是&#xff1a;选择题&a…...

Java手写AVL树

Java手写AVL树 1. AVL树实现思路原理 为了解释AVL树的实现思路原理&#xff0c;下面使用Mermanid代码表示该算法的思维导图&#xff1a; #mermaid-svg-ycH8kKpzVk2HWEby {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid…...

运维自动化:提高效率的秘诀

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

C++设计模式_05_Observer 观察者模式

接上篇&#xff0c;本篇将会介绍C设计模式中的Observer 观察者模式&#xff0c;和前2篇模板方法Template Method及Strategy 策略模式一样&#xff0c;仍属于“组件协作”模式。Observer 在某些领域也叫做 Event 。 文章目录 1. 动机&#xff08; Motivation&#xff09;2. 代码…...

github网站打不开,hosts文件配置

首先获取github官网的ip地址&#xff0c; 打开cmd&#xff0c;输入ping github.com 配置&#xff1a; #github 140.82.114.4 github.com 199.232.69.194 github.global.ssl.fastly.net 185.199.108.153 assets-cdn.github.com 185.199.110.153 assets-cdn.github.com 185.199…...

总结PCB设计的经验

一般PCB基本设计流程如下&#xff1a;前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。: :   第一&#xff1a;前期准备。这包括准备元件库和原理图。“工欲善其事&#xff0c;必先利其器”&#xff0c;要做出一…...

HCIE-HCS规划设计搭建

1、相关术语 1、等价路由 等价路由&#xff08;Equal-cost routing&#xff09;是一种网络路由策略&#xff0c;用于在网络中选择多个具有相同路由度量&#xff08;路由距离或成本&#xff09;的最佳路径之一来转发数据流量。 当存在多个路径具有相同的路由度量时&#xff0c;…...

c语言输出杨辉三角

#include<stdio.h> int main() {int x 0; //表示杨辉三角的的大小int y 1;printf("请输入x的值: ");scanf("%d", &x);for (int i 0; i < x; i) {for (int j 0; j < i; j) {if (j 0 || i 0) {y 1;}else {y y * (i - j 1) / j;}pri…...

性能测试-持续测试及性能测试建设(22)

什么是持续测试? 持续测试定义为:在软件交付流水线中执行自动化测试的过程,目的是获得关于预发布软件业务风险的即时反馈。 完成持续测试,我们还是需要回到定义中,它有3个关键词:软件交付流水线、自动化测试、即时反馈。 首先,持续测试需要具备一条完整的流水线,其代表…...

嵌入式C 语言中的三块技术难点

​ C 语言在嵌入式学习中是必备的知识&#xff0c;甚至大部分操作系统都要围绕 C 语言进行&#xff0c;而其中有三块技术难点&#xff0c;几乎是公认级别的“难啃的硬骨头”。 今天就来带你将这三块硬骨头细细拆解开来&#xff0c;一定让你看明白了。 0x01 指针 指针是公认…...

【斗破年番】紫研新形象,萧炎终成翻海印,救援月媚,三宗决战

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析斗破年番。 斗破苍穹年番动画更新了&#xff0c;小医仙帅气回归&#xff0c;萧炎紫妍成功进入山谷闭关苦修&#xff0c;美杜莎女王守护没多久&#xff0c;就因蛇人族求救离开。从官方公布的最新预告来看&#xff0c;萧炎紫…...

差分方程模型:国民总收入(GDP)的乘数-加速数模型

【背景知识-凯恩斯经济增长模型】 凯恩斯(John M.Keynes)建立了著名的国民经济增长模型。令Y表示国民总收入&#xff0c;C表示总消费&#xff0c;E为总支出&#xff0c;I表示投资&#xff0c;G为政府的投入&#xff08;如基建等&#xff09;。那么有 【6.1】 其中&#xff0…...

【C语言】指针和数组笔试题解析(1)

指针是C语言的灵魂&#xff0c;他的玩法多种多样&#xff0c;这篇文章带来指针的笔试题详解&#xff0c;可以帮助我们更好的理解与巩固指针的知识 目录 预备知识&#xff1a;题目&#xff1a;一维数组&#xff1a;二维数组&#xff1a; 题目比较多&#xff0c;但切记戒骄戒躁&a…...

Vue中组件的三种注册方式

组件的注册 1.全局注册&#xff1a; 在全局注册中&#xff0c;你需要确保在 Vue 根实例之前导入并注册组件。通常&#xff0c;你会在入口文件&#xff08;例如 main.js&#xff09;中执行这些操作。 // main.jsimport Vue from vue; import App from ./App.vue;// 导入全局组…...

docker 和k8s 入门

docker 和k8s 入门 本文是云原生的学习记录&#xff0c;可以参考以下文档 k8s https://www.yuque.com/leifengyang/oncloud 相关视频教程可参考如下 https://www.bilibili.com/video/BV13Q4y1C7hS?p2&vd_source0882f549dac54045384d4a921596e234 相对于公有云&#x…...

基于Yolov8的交通标志牌(TT100K)识别检测系统

1.Yolov8介绍 Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的&#xff08;SOTA&#xff09;模型&#xff0c;它建立在先前YOLO成功基础上&#xff0c;并引入了新功能和改进&#xff0c;以进一步提升性能和灵活…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...