当前位置: 首页 > news >正文

哈希及哈希表的实现

目录

一、哈希的引入 

二、概念

三、哈希冲突

四、哈希函数

常见的哈希函数

1、直接定址法

2、除留余数法

五、哈希冲突的解决

1、闭散列

2、开散列


一、哈希的引入 

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。

这种思想就是我们接下来要讲的哈希了。


二、概念

如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立
一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
插入元素:根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。
搜索元素:对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)。

当有这些数据时:1,4,5,6,7,9。我们可以通过下图的方式去插入数据。

 用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。


三、哈希冲突

按照上面的方式,如果我们插入的是 1,2,32,222,7,9这几个数呢?

我们发现,如果按照哈希的思想去插入的话,2,32,22将会被放在同一个位置,这样就会引起一些麻烦。如果我去访问下标为2位置的数据,到底访问的哪一个呢?我们将这种现象称为哈希冲突。

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。


四、哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

常见的哈希函数

1、直接定址法

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B。
优点:简单、均匀。
缺点:需要事先知道关键字的分布情况。
使用场景:适合查找比较小且连续的情况。

2、除留余数法

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p (p<=m),将关键码转换成哈希地址。


五、哈希冲突的解决

1、闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

那么这个下一个位置怎么确定呢?我们有两种方法来帮助我们寻找“下一个”位置。

~ 线性探测 

比如三中的情况,插入2之后,现在需要插入元素32,先通过哈希函数计算哈希地址为2,因此32理论上应该插在该位置,但是该位置已经放了值为2的元素,即发生哈希冲突。这时我们就需要去寻找该位置后面的空位置了。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

如下图,32只能插入在3的位置了。 

 注:采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素
会影响其他元素的搜索。比如删除元素2,如果直接删除掉,32查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

在有限的空间内,随着我们插入的数据越来越多,冲突的概率也越来越大,查找效率越来越低,所以闭散列的冲突表不可能让它满了,所以我们就引入了负载因子:

负载因子(载荷因子):等于表中的有效数据个数/表的大小,衡量表的满程度,在闭散列中负载因子不可能超过1(1代表满了)。一般情况下,负载因子一般在0.7左右。负载因子越小,冲突概率也越小,但是消耗的空间越大,负载因子越大,冲突概率越大,空间的利用率越高。

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};//特化
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t val = 0;for (auto ch : key){val *= 131;val += ch;}return val;}
};namespace closehash
{
enum State
{EMPTY,DELETE,EXIST
};template<class K,class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:bool insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}if (_tables.size() == 0 || 10 * _size / _tables.size() >= 7){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;HashTable<K, V, Hash> newHT;newHT._tables.resize(newsize);for (auto& e : _tables){if (e._state == EXIST){newHT.insert(e._kv);}}_tables.swap(newHT._tables);}Hash hash;size_t index = hash(kv.first) % _tables.size();//如果kv.first是string类型,那么就无法取模,因此我们要使用仿函数将其转换成整型//线性探测while (_tables[index]._state == EXIST){index++;index %= _tables.size();}_tables[index]._kv = kv;_tables[index]._state = EXIST;_size++;return true;}HashData<K, V>* Find(const K& key){if (_tables.size() == 0){return nullptr;}Hash hash;size_t hashi = hash(key) % _tables.size();size_t start = hashi;while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._state != DELETE && _tables[hashi]._kv.first == key){return &_tables[hashi];}hashi++;hashi %= _tables.size();if (hashi == start){break;}}return nullptr;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_size--;return true;}elsereturn false;}private:vector<HashData<K, V>> _tables;size_t _size = 0; //存储了多少个有效数据};

2、开散列

概念:开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

 

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

那么是不是我们只需要开固定的空间,然后其他的数据就一直连接到对应的桶的后面,那样桶是不是太长了呢?

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容。

增容条件:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

template<class K,class V>struct HashNode{pair<K, V> _kv;HashNode<K, V>* _next;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};template<class K, class V, class Hash = HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;free(cur);cur = next;}_tables[i] = nullptr;}}bool insert(const pair<K, V>& kv){//去重if (Find(kv.first)){return false;}Hash hash;//扩容if (_size == _tables.size()){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 10;vector<Node*> newTables;newTables.resize(newsize, nullptr);//将旧表中结点移动映射到新表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hash(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = hash(kv.first) % _tables.size();Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;_size++;return true;}Node* Find(const K& key){if (_tables.size() == 0)return nullptr;Hash hash;size_t hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;elsecur = cur->_next;}return nullptr;}bool erase(const K& key){if (_tables.size() == 0){return nullptr;}Hash hash;size_t hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];Node* prev = nullptr;while (cur){if (cur->_kv.first == key){// 1、头删// 2、中间删if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;_size--;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables;size_t _size = 0;};

相关文章:

哈希及哈希表的实现

目录 一、哈希的引入 二、概念 三、哈希冲突 四、哈希函数 常见的哈希函数 1、直接定址法 2、除留余数法 五、哈希冲突的解决 1、闭散列 2、开散列 一、哈希的引入 顺序结构以及平衡树中&#xff0c;元素关键码与其存储位置之间没有对应的关系&#xff0c;因此在查找…...

CLIP 基础模型:从自然语言监督中学习可转移的视觉模型

一、说明 在本文中&#xff0c;我们将介绍CLIP背后的论文&#xff08;Contrastive Language-I mage Pre-Training&#xff09;。我们将提取关键概念并分解它们以使其易于理解。此外&#xff0c;还对图像和数据图表进行了注释以澄清疑问。 图片来源&#xff1a; 论文&#xff1a…...

解读性能指标TP50、TP90、TP99、TP999

TP指标说明 TP指标: 指在一个时间段内&#xff0c;统计该方法每次调用所消耗的时间&#xff0c;并将这些时间按从小到大的顺序进行排序, 并取出结果为&#xff1a;总次数*指标数对应TP指标的值&#xff0c;再取出排序好的时间。 TPTop Percentile&#xff0c;Top百分数&#…...

【无标题】mysql 截取两个,之间字符串

截取两个&#xff0c;之间字符串 select area,SUBSTRING_INDEX(et.area,,,1) as XZQH1,if(length(et.area)-length(replace(et.area,,,))>1,SUBSTRING_INDEX(SUBSTRING_INDEX(et.area,,,2),,,-1),NULL) AS XZQH2,if(length(et.area)-length(replace(et.area,,,))>2,SUBS…...

全局的键盘监听事件

一、设定全局键盘监听事件 放在vue 的created()或者mounted ()中&#xff0c;可对整个文档进行键盘事件监听。 new Vue({ created() { window.addEventListener(keydown, this.handleKeydown); }, beforeDestroy() { window.removeEventListener(keydown, this.handleK…...

Qt自定义QSlider(支持水平垂直)

实现背景&#xff1a; Qt本身有自己的QSlider&#xff0c;为什么我们还要自定义实现呢&#xff0c;因为Qt自带的QSlider存在一个问题&#xff0c;当首尾为圆角时&#xff0c;滑动滚动条到首尾时会出现圆角变成矩形的问题。当然如果QSS之间的margin和滑动条的圆角控制的好的话是…...

会话控制学习

文章目录 介绍cookieexpress中使用cookie获取cookie session配置区别 介绍 cookie express中使用cookie 退出登录就是删除cookie 获取cookie 添加中间键后&#xff0c;直接获取 session 配置 区别...

dweb-browser阅读

dweb-browser阅读 核心模块js.browser.dwebjmm.browser.dwebmwebview.browser.dwebnativeui.browser.dweb.sys.dweb plaoc插件 核心模块 js.browser.dweb 它是一个 javascript-runtime&#xff0c;使用的是 WebWorker 作为底层实现。它可以让您在 dweb-browser 中运行 javasc…...

ChatGPT:使用fastjson读取JSON数据问题——如何使用com.alibaba.fastjson库读取JSON数据的特定字段

ChatGPT&#xff1a;使用fastjson读取JSON数据问题——如何使用com.alibaba.fastjson库读取JSON数据的特定字段 有一段Json字符串&#xff1a; {"code": 200,"message": "success","data": {"total": "1","l…...

2、ARM处理器概论

一、ARM处理器概述 1、ARM的含义 ARM&#xff08;Advanced RISC Machines&#xff09;有三种含义&#xff0c;一个公司的名称、一类处理器的通称、一种技术 ARM公司&#xff1a; 成立于1990年11月&#xff0c;前身为Acorn计算机公司主要设计ARM系列RISC处理器内核授权ARM内…...

【Python】福利彩票复式模拟选号程序

【效果】 【注意】 逻辑是用Random模拟10000次复试彩票选号,然后给出最大可能性一组。但是模拟终究是模拟,和现实彩票结果没有任何联系,下载下来玩就是了,没人能保证模拟出中奖号码,不要投机,不要投机! 【修改】 代码很简单,如果想改成不是复式的,自行修改即可。 如…...

Pytorch 机器学习专业基础知识+神经网络搭建相关知识

文章目录 一、三种学习方式二、机器学习的一些专业术语三、模型相关知识四、常用的保留策略五、数据处理六、解决过拟合与欠拟合七、成功的衡量标准 一、三种学习方式 有监督学习&#xff1a; 1、分类问题 2、回归问题 3、图像分割 4、语音识别 5、语言翻译 无监督学习 1、聚类…...

torch 和paddle 的GPU版本可以放在同一个conda环境下吗

新建conda 虚拟环境&#xff0c;python 版本3.8.17 虚拟机&#xff0c;系统centos 7,内核版本Linux fastknow 3.10.0-1160.92.1.el7.x86_64 &#xff0c;显卡T4&#xff0c;nvidia-smi ,460.32.03&#xff0c;对应cuda 11.2&#xff0c;安装cuda 11.2和cudnn&#xff0c;conda…...

MYBATIS-PLUS入门使用、踩坑记录

转载&#xff1a; mybatis-plus入门使用、踩坑记录 - 灰信网&#xff08;软件开发博客聚合&#xff09; 首先引入MYBATIS-PLUS依赖&#xff1a; SPRING BOOT项目&#xff1a; <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus…...

C# 静态类和sealed类(密封类)的区别

网上看到很多文章写静态类&#xff0c;和密封类&#xff0c;但是鲜有它们的对比总结&#xff0c;在此简单总结一下&#xff1a; 静态类&#xff08;Static Class&#xff09;&#xff1a; 静态类不能被实例化&#xff0c;其成员都是静态的&#xff0c;可以通过类名直接访问。静…...

el-table如何实现自动缩放,提示隐藏内容

前提问题&#xff1a;大屏展示中某一个区域是表格内容&#xff0c;当放大或缩小网页大小时&#xff0c;表格宽度随之缩放&#xff0c;但表格内容未进行缩放&#xff0c;需要表格内容与网页大小同时进行缩放&#xff0c;且表头和表格内容宽度不够未显示全时&#xff0c;需要进行…...

CRM客户管理软件对出海企业的帮助与好处

2023我们走出了疫情的阴霾&#xff0c;经济下行压力大&#xff0c;面对内需的不足&#xff0c;国内企业纷纷选择出海&#xff0c;拓展海外业务增加企业营收。企业出海不是一件易事&#xff0c;有了CRM系统可以让公司事半功倍&#xff0c;下面就来说一说CRM客户管理软件能为出海…...

【QT--使用百度地图API显示地图并绘制路线】

QT--使用百度地图API显示地图并绘制路线 前言准备工作申请百度地图密钥(AK)安装开发环境 开发过程新建项目ui界面GPSManager类主窗口Map 效果展示 前言 先吐槽一下下&#xff0c;本身qt学的就不咋滴&#xff0c;谁想到第一件事就是让写一个上位机工具&#xff0c;根据CAN总线传…...

C数据结构二.练习题

一.求级数和 2.求最大子序列问题:设给定一个整数序列 ai.az..,a,(可能有负数).设计一个穷举算法,求a 的最大值。例如,对于序列 A {1,-1,1,-1,-1,1,1,1,1.1,-1,-1.1,-1,1,-1},子序列 A[5..9](1,1,1,1,1)具有最大值5 3.设有两个正整数 m 和n,编写一个算法 gcd(m,n),求它们的最大公…...

猫头虎博主第5️⃣期赠书活动:《Java官方编程手册(第12版·Java 17)套装上下册》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...