使用 PyTorch 的计算机视觉简介 (1/6)

一、说明
二、CV常见的问题
计算机视觉最常见的问题包括:
- 图像分类是最简单的任务,当我们需要将图像分类为许多预定义类别之一时,例如,区分照片上的猫和狗,或识别手写数字。
- 目标检测是一项比较困难的任务,我们需要在图片上找到已知对象并对其进行定位,即返回每个识别对象的边界框。
- 分割类似于对象检测,但我们需要返回一个精确的像素图,概述每个识别的对象,而不是给出边界框。
我们将专注于图像分类任务,以及如何使用神经网络来解决它。与任何其他机器学习任务一样,要训练用于对图像进行分类的模型,我们需要一个标记的数据集,即每个类的大量图像。
三、图像作为张量
计算机视觉适用于图像。您可能知道,图像由像素组成,因此可以将它们视为像素的矩形集合。
在本单元的第一部分中,我们将处理手写数字识别。我们将使用 MNIST 数据集,该数据集由手写数字的灰度图像组成,28x28 像素。每个图像都可以表示为 28x28 数组,该数组的元素将表示相应像素的强度 - 在 0 到 1 范围内(在这种情况下使用浮点数),或者 0 到 255(整数)。一个名为numpy的流行python库通常用于计算机视觉任务,因为它允许有效地操作多维数组。
为了处理彩色图像,我们需要一些方法来表示颜色。在大多数情况下,我们用 3 个强度值表示每个像素,对应于红色 (R)、绿色 (G) 和蓝色 (B) 分量。这种颜色编码称为RGB,因此大小为W×H的彩色图像将表示为大小
为3 × H × W的数组。
使用多维数组来表示图像也有一个优势,因为我们可以使用额外的维度来存储图像序列。
例如,为了表示由 200 帧组成的视频片段,维度为 800 × 600,我们可以使用大小为 200 × 3 × 600 × 800 的张量。
多维数组也称为张量。通常,当我们谈论一些神经网络框架时,我们指的是张量,例如 PyTorch。PyTorch 和 numpy 数组中的张量之间的主要区别在于,张量支持 GPU 上的并行操作(如果可用)。此外,PyTorch 在张量上操作时提供了额外的功能,例如自动微分。
四、导入包并加载 MNIST 数据集
!pip install -r https://raw.githubusercontent.com/MicrosoftDocs/pytorchfundamentals/main/computer-vision-pytorch/requirements.txt
#Import the packages needed.
import torch
import torchvision
import matplotlib.pyplot as plt
import numpy as np
PyTorch有许多直接从库中可用的数据集。在这里,我们使用众所周知的手写数字MNIST数据集,可通过PyTorch中的torchvison.datasets.MNIST获得。数据集对象以 Python 想象库 (PIL) 图像的形式返回数据,我们通过传递 transform = ToTensor() 参数将其转换为张量。
使用自己的笔记本时,您还可以尝试其他内置数据集,特别是FashionMNIST数据集。
from torchvision.transforms import ToTensordata_train = torchvision.datasets.MNIST('./data',download=True,train=True,transform=ToTensor())
data_test = torchvision.datasets.MNIST('./data',download=True,train=False,transform=ToTensor())
五、可视化数据集
现在我们已经下载了数据集,我们可以可视化数字。
fig,ax = plt.subplots(1,7)
for i in range(7):ax[i].imshow(data_train[i][0].view(28,28))ax[i].set_title(data_train[i][1])ax[i].axis('off')

六、数据集结构
我们总共有 6000 张训练图像和 1000 张测试图像。拆分数据以进行训练和测试非常重要。我们还想做一些数据探索,以更好地了解我们的数据是什么样子的。
每个样本都是以下结构的元组:
- 第一个元素是一个数字的实际图像,由形状为 1 × 28 × 28 的张量表示
- 第二个元素是一个标签,用于指定张量表示哪个数字。它是一个张量,包含从 0 到 9 的数字
data_train是一个训练数据集,我们将使用它来训练我们的模型。data_test是一个较小的测试数据集,我们可以用来验证我们的模型。
print('Training samples:',len(data_train))
print('Test samples:',len(data_test))print('Tensor size:',data_train[0][0].size())
print('First 10 digits are:', [data_train[i][1] for i in range(10)])
Training samples: 60000
Test samples: 10000
Tensor size: torch.Size([1, 28, 28])
First 10 digits are: [5, 0, 4, 1, 9, 2, 1, 3, 1, 4]
图像的所有像素强度都由介于 0 和 1 之间的浮点值表示:
print('Min intensity value: ',data_train[0][0].min().item())
print('Max intensity value: ',data_train[0][0].max().item())
Min intensity value: 0.0
Max intensity value: 1.0
祝你学习愉快!V笔记本
相关文章:
使用 PyTorch 的计算机视觉简介 (1/6)
一、说明 Computer Vision(CV)是一个研究计算机如何从数字图像和/或视频中获得一定程度的理解的领域。理解这个定义具有相当广泛的含义 - 它可以从能够区分图片上的猫和狗,到更复杂的任务,例如用自然语言描述图像。 二、CV常见的问…...
用PHP实现极验验证功能
极验验证是一种防机器人的验证机制,可以通过图像识别等方式来判断用户是否为真实用户。在实现极验验证功能时,您需要进行以下步骤: 1 注册极验账号: 首先,您需要在极验官网注册账号并创建一个应用,获取相应…...
【数据结构初阶】三、 线性表里的链表(无头+单向+非循环链表)
相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【数据结构初阶】二、 线性表里的顺序表_高高的胖子的博客-CSDN博客 引言 通过上期对顺序表的介绍和使用 我们可以知道顺序表有以下优点和缺点: 顺序表优点 尾插 和 尾…...
Mybatis 映射器与XML配置职责分离
之前我们介绍了使用XML配置方式完成对数据的增删改查操作,使用此方式在实际调用时需要使用【命名空间.标签编号】的方式执行,此方式在编写SQL语句时很方便,而在执行SQL语句环节就显得不太优雅;另外我们也介绍了使用映射器完成对数…...
微服务引擎
微服务引擎,MSE_微服务引擎 MSE-阿里云帮助中心 一、什么是微服务引擎MSE 微服务引擎MSE(Microservices Engine)是一个面向业界主流开源微服务生态的一站式微服务平台,提供注册配置中心(原生支持Nacos/ZooKeeper/Eur…...
前端JavaScript入门到精通,javascript核心进阶ES6语法、API、js高级等基础知识和实战 —— JS基础(三)
允许一切发生,生活不过是见招拆招。 思维导图 一、循环-for 1.1 for 循环-基本使用 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEe…...
搭建部署属于自己的基于gpt3.5的大语言模型(基于flask+html+css+js+mysql实现)
一、简介 本项目是一个基于GPT-3.5模型的聊天机器人网站,旨在为用户提供一个简便、直接的方式来体验和利用GPT-3.5模型的强大功能。项目以Flask为基础,构建了一个完整的Web应用程序,其中包含了多个前端页面和后端API接口,能够处理…...
AI创作专家,免费的AI创作专家工具
AI创作专家是一种崭新的工具,它们利用先进的人工智能技术,帮助创作者和写手更轻松地应对创作挑战。这些工具不仅可以生成文字,还可以提供灵感、帮助构思和组织思路,使创作过程更加高效。 147GPT批量文章生成工具www.147seo.com/…...
Nginx之gzip模块解读
目录 gzip基本介绍 gzip工作原理 Nginx中的gzip 不建议开启Nginx中的gzip场景 gzip基本介绍 gzip是GNUzip的缩写,最早用于UNIX系统的文件压缩。HTTP协议上的gzip编码是一种用来改进web应用程序性能的技术,web服务器和客户端(浏览器&…...
微软在Windows 11推出Copilot,将DALL-E 3集成在Bing!
美东时间9月21日,微软在美国纽约曼哈顿举办产品发布会,生成式AI成为重要主题之一。 微软表示,Copilot将于9月26日在Windows 11中推出;Microsoft 365 Copilot 将于11 月1日向企业客户全面推出;将OpenAI最新的文本生成图…...
SLAM从入门到精通(消息传递)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 前面我们只是编写了一个publisher节点,以及一个subscribe节点。有了这两个节点,它们之间就可以通信了。在实际生产中&#…...
思科路由器:NAT的基础配置
一直以来,对于华为、H3C、锐捷交换机的命令配置,不断的有朋友留言,三家交换机的配置命令容易弄混,经常在实际项目配置中出错,因此,找几个基础的示例来练练。 R1配置 Router>en Router>enable Rout…...
动态代理。
无侵入式的给代码增加额外的功能 代理的作用:对象如果干的事情太繁琐,就可以通过代理来转移部分职责;也就是相当于把对象的的方法拆开一些步骤分给代理做,对象做关键的就行了;并且代理做的这些繁琐的事情的名字也要和…...
Learn Prompt-GPT-4:能力
GPT-4能力大赏 常识知识推理 一个猎人向南走了一英里,向东走了一英里,向北走了一英里,最后回到了起点。他看到了一只熊,于是开枪打了它。这只熊是什么颜色的? 答案是白色,因为这种情况只可能发生在北…...
iOS——ViewController的生命周期
ViewController ViewController的生命周期是指在应用程序运行过程中,ViewController实例从创建到销毁的整个过程。在这个过程中,ViewController会经历一系列的生命周期方法,这些方法可以帮助开发者管理ViewController及其相关的视图和逻辑。…...
SkyWalking内置参数与方法
参数 全局指标 指标指标名称all_p99所有服务响应时间的 p99 值all_p95所有服务响应时间的 p95 值all_p90所有服务响应时间的 p90 值all_p75所有服务响应时间的 p75 值all_p70所有服务响应时间的 p70 值all_heatmap所有服务响应时间的热点图 服务指标 指标指标名称service_r…...
【C++面向对象侯捷】12.虚函数与多态 | 13.委托相关设计【设计模式 经典做法,类与类之间关联起来,太妙了,不断的想,不断的写代码】
文章目录 12.虚函数与多态举例:委托 继承【观察者模式】13.委托相关设计Composite 组合模式Prototype 原型模式 12.虚函数与多态 纯虚函数 一定要 子类重新定义的 继承和复合 关系下的构造和析构 举例:委托 继承【观察者模式】 13.委托相关设计 问题…...
基于若依ruoyi-nbcio增加flowable流程待办消息的提醒,并提供右上角的红字数字提醒(五)
1、下面提供给前端待办提醒消息的接口SysNoticeController,增加如下: /*** 补充用户数据,并返回系统消息* return*/Log(title "系统消息")GetMapping("/listByUser")public R<Map<String, Object>> listByU…...
hive数据初始化
mysql版本:3.1.3 hive版本: 8.0.31 hive连接配置 <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://node88:3306/hive?createDatabaseIfNotExisttrue</value> </pr…...
React+Node——next.js 构建前后端项目
一、安装全局依赖 npm i -g create-next-app二、创建next项目 create-next-app react-next-demo //或 create-next-app react-next-demo --typescript三、加载mysql依赖 npm i -S mysql2四、运行项目 npm run dev五、创建db文件目录,目录下创建index.ts import…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
[USACO23FEB] Bakery S
题目描述 Bessie 开了一家面包店! 在她的面包店里,Bessie 有一个烤箱,可以在 t C t_C tC 的时间内生产一块饼干或在 t M t_M tM 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC,tM≤109)。由于空间…...
海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》
近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...
