Denoising diffusion implicit models 阅读笔记
Denoising diffusion probabilistic models (DDPMs)从马尔科夫链中采样生成样本,需要迭代多次,速度较慢。Denoising diffusion implicit models (DDIMs)的提出是为了加速采样过程,减少迭代的次数,并且要求DDIM可以复用DDPM训练的网络。
加速采样的基本思路是,DDPM的生成过程需要从 [ T , ⋯ , 1 ] [T,\cdots,1] [T,⋯,1]的序列逐步采样,DDIM则可以从 [ T , ⋯ , 1 ] [T,\cdots,1] [T,⋯,1]的子序列采样来生成,通过跳步的方式减少采样的步数。
非马尔科夫的前向过程
DDPM中推理分布(inference distribution) q ( x 1 : T ∣ x 0 ) q(\mathbf x_{1:T}|\mathbf x_0) q(x1:T∣x0)是固定的马尔科夫链。DDIM的作者考虑构造新的推理分布,该推理过程和DDPM优化相同的目标,但能产生新的生成过程。
考虑一个推理分布族Q,由实向量 σ ∈ R ≥ 0 T \sigma \in \mathbb{R}^T_{\ge 0} σ∈R≥0T索引:
根据上面的定义有 q σ ( x t ∣ x 0 ) = N ( α t x 0 , ( 1 − α t ) I ) q_{\sigma}(\mathbf x_t | \mathbf x_0) = \mathcal{N}(\sqrt{\alpha_t}\mathbf x_0, (1-\alpha_t)I) qσ(xt∣x0)=N(αtx0,(1−αt)I)。
对应的前向过程也是高斯分布:
通过上面定义的推理过程,前向过程变成了非马尔科夫的,因为每一步都依赖 x 0 \mathbf x_0 x0。
参数 σ \sigma σ控制前向过程的随机性,如果 σ → 0 \sigma \rightarrow 0 σ→0,那么在已知 x 0 \mathbf x_0 x0和其中任一个 x t \mathbf x_t xt的情况下, x t − 1 \mathbf x_{t-1} xt−1是固定的。
根据上面的推理过程,定义需要学习的生成过程为:
其中
根据上面的定义的推理过程和生成过程,优化的目标是
可以证明该优化目标和特定情况下DDPM的优化目标相同。
逆向生成过程的采样方法如下:
选择不同的 σ \sigma σ值会导致不同的生成过程,但它们使用相同的 ϵ θ \epsilon_{\theta} ϵθ模型。
如果 σ t = ( 1 − α t − 1 ) / ( 1 − α t ) ( 1 − α t ) / ( 1 − α t − 1 ) \sigma_t=\sqrt{(1-\alpha_{t-1})/(1-\alpha_{t})}\sqrt{(1-\alpha_{t})/(1-\alpha_{t-1})} σt=(1−αt−1)/(1−αt)(1−αt)/(1−αt−1),那么前向过程又变成了马尔科夫的,生成过程和DDPM一样。
如果 σ t = 0 \sigma_t=0 σt=0,那么随机噪声前的系数是0, x 0 \mathbf x_0 x0和 x T \mathbf x_T xT之间的关系是固定的,这属于隐概率模型(implicit probabilistic model)。因此,作者把这种情况称为denoising diffusion implicit model (DDIM)。
加速
为了加速采样,作者考虑下面的推理过程:
其中 τ \tau τ是长度为S的 [ 1 , ⋯ , T ] [1,\cdots,T] [1,⋯,T]的子序列, τ S = T \tau_S=T τS=T, τ ‾ : = { 1 , … , T } \ τ \overline{\tau}:=\{1,\ldots,T \} \backslash \tau τ:={1,…,T}\τ是除去子序列剩下的序号。
定义
该推理分布对应的生成过程如下:
定义需要学习的概率为:
根据上面的定义的推理过程和生成过程,优化的目标是
可以证明该优化目标和特定情况下DDPM的优化目标相同。
因此,可以利用DDPM训练的网络,但是从子序列采样生成图像。
相关文章:

Denoising diffusion implicit models 阅读笔记
Denoising diffusion probabilistic models (DDPMs)从马尔科夫链中采样生成样本,需要迭代多次,速度较慢。Denoising diffusion implicit models (DDIMs)的提出是为了加速采样过程,减少迭代的次数,并且要求DDIM可以复用DDPM训练的网…...

【Java 基础篇】Executors工厂类详解
在多线程编程中,线程池是一项重要的工具,它可以有效地管理和控制线程的生命周期,提高程序的性能和可维护性。Java提供了java.util.concurrent包来支持线程池的创建和管理,而Executors工厂类是其中的一部分,它提供了一些…...
SpringBoot MongoDB操作封装
1.引入Jar包 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId></dependency> 2.MongoDbHelper操作 /*** MongoDB Operation class* author Mr.Li* date 2022-12-05*…...

PyTorch 模型性能分析和优化 — 第 1 部分
一、说明 这篇文章的重点将是GPU上的PyTorch培训。更具体地说,我们将专注于 PyTorch 的内置性能分析器 PyTorch Profiler,以及查看其结果的方法之一,即 PyTorch Profiler TensorBoard 插件。 二、深度框架 训练深度学习模型,尤其是…...

Unity3D 简易音频管理器
依赖于Addressable 依赖于单例模板:传送门 using System.Collections.Generic; using System.Security.Cryptography; using System; using UnityEngine; using UnityEngine.AddressableAssets;namespace EasyAVG {public class AudioManager : MonoSingleton<…...

【李沐深度学习笔记】线性回归
课程地址和说明 线性回归p1 本系列文章是我学习李沐老师深度学习系列课程的学习笔记,可能会对李沐老师上课没讲到的进行补充。 线性回归 如何在美国买房(经典买房预测问题) 一个简化的模型 线性模型 其中, x → [ x 1 , x 2 ,…...

微信收款码费率0.38太坑了
作为一个有多年运营经验的商家,我本人在申请收款功能时曾经走过了不少弯路。我找遍了市面上的知名的支付公司,但了解到的收款手续费率通常都在0.6左右,最低也只能降到0.38。这个过程吃过不少苦头。毕竟,收款功能是我们商家的命脉&…...
【学习笔记】CF1103D Professional layer
首先分析不出啥性质,所以肯定是暴力优化😅 常见的暴力优化手段有均摊,剪枝,数据范围分治(points),答案值域分析之类的。 比较经典的题目是 CF1870E Another MEX Problem,可以用剪枝…...
vue之Pinia
定义 Store | Pinia 开发文档 1.什么是Pinaia Pinia 是 Vue 的专属状态管理库,它允许你跨组件或页面共享状态。 2.理解Pinaia核心概念 定义Store 在深入研究核心概念之前,我们得知道 Store 是用 defineStore() 定义的,它的第一个参数要求是一…...

antd-vue 级联选择器默认值不生效解决方案
一、业务场景: 最近在使用Vue框架和antd-vue组件库的时候,发现在做编辑回显时** 级联选择器** 组件的默认值不生效。为了大家后面遇到和我一样的问题,给大家分享一下 二、bug信息: 三、问题原因: 确定不了唯一的值&a…...

分享53个Python源码源代码总有一个是你想要的
分享53个Python源码源代码总有一个是你想要的 链接:https://pan.baidu.com/s/1ew3w2_DXlSBrK7Mybx3Ttg?pwd8888 提取码:8888 项目名称 100-Python ControlXiaomiDevices DRF-ADMIN 后台管理系统 FishC-Python3小甲鱼 Flask框架的api项目脚手架 …...

【每日一题】658. 找到 K 个最接近的元素
658. 找到 K 个最接近的元素 - 力扣(LeetCode) 给定一个 排序好 的数组 arr ,两个整数 k 和 x ,从数组中找到最靠近 x(两数之差最小)的 k 个数。返回的结果必须要是按升序排好的。 整数 a 比整数 b 更接近 …...
并发任务队列(字节青训测试题)
需求描述 封装一个并发任务队列类,用于对一些异步任务按指定的并发数量进行并发执行。 /*** 延迟函数* param {number} time - 延迟时间* return {Promise} delayFn - 延迟函数(异步封装)*/ function timeout(time) {return new Promise((resolve) > {setTimeo…...

Ubuntu 安装Nacos
1、官网下载最新版nacos https://github.com/alibaba/nacos/releases 本人环境JDK8,Maven3.6.3,启动Nacos2.2.1启动失败,故切换到2.1.0启动成功 2、放到服务器目录下,我的在/home/xxx/apps下 3、解压 $ tar -zxvf nacos-serve…...
CSS 小球随着椭圆移动
html代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><…...

【李沐深度学习笔记】线性代数
课程地址和说明 线性代数p1 本系列文章是我学习李沐老师深度学习系列课程的学习笔记,可能会对李沐老师上课没讲到的进行补充。 线性代数 标量 标量(scalar),亦称“无向量”。有些物理量,只具有数值大小,…...

vuejs - - - - - 递归组件的实现
递归组件的实现 1. 需求描述:2. 效果图:3. 代码3.1 封装组件代码3.2 父组件使用 1. 需求描述: 点击添加行,增加一级目录结构当类型为object or array时,点击右侧➕,增加子集点击右侧🚮&#x…...

精准对接促合作:飞讯受邀参加市工信局举办的企业供需对接会
2023年9月21日,由惠州市工业和信息化局主办的惠州市工业软件企业与制造业企业供需对接会成功举办,对接会旨在促进本地工业软件企业与制造业企业的紧密合作,推动数字化转型的深入发展。此次会议在市工业和信息化局16楼会议室举行,会…...
数学建模之遗传算法
文章目录 前言遗传算法算法思想生物的表示初始种群的生成下一代种群的产生适应度函数轮盘赌交配变异混合产生新种群 停止迭代的条件遗传算法在01背包中的应用01背包问题介绍01背包的其它解法01背包的遗传算法解法生物的表示初始种群的生成下一代种群的产生适应度函数轮盘赌交配…...
ISO9001认证常见的不符合项
今天,整理了一些关于ISO9001质量管理体系审核最常见的不合格项,以供大家参考。 一、质量管理体系 1、质量手册(标准条款4.2.2) (1)各部门执行的文件与手册的规定不一致。 (2)质量…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...