当前位置: 首页 > news >正文

Anderson-Darling正态性检验【重要统计工具】

Anderson-Darling正态性检验是一种用于确定数据集是否服从正态分布(也称为高斯分布或钟形曲线分布)的统计方法。它基于Anderson和Darling于1954年提出的检验统计量。该检验的基本原理和用途如下:

基本原理:

  1. 零假设(Null Hypothesis):Anderson-Darling检验的零假设是数据集来自于正态分布。这意味着,如果数据确实服从正态分布,则零假设成立。

  2. 计算Anderson-Darling统计量:检验首先计算Anderson-Darling统计量,这是一个衡量数据与正态分布拟合的度量。该统计量基于数据的观察值和正态分布的期望值之间的差异。

  3. 与临界值比较:接下来,Anderson-Darling统计量与临界值进行比较。临界值是根据所选的显著性水平(通常为5%)和数据集的大小计算得出的。如果Anderson-Darling统计量大于临界值,就意味着数据不太可能来自于正态分布。

  4. 做出决策:根据统计量与临界值的比较,可以决定是否拒绝零假设。如果统计量足够大,超过了临界值,通常会拒绝零假设,这意味着数据不服从正态分布。否则,不能拒绝零假设,这表示数据可能服从正态分布。

用途:

  1. 数据分布检查:Anderson-Darling检验可用于验证数据是否符合正态分布的假设。这对于许多统计分析和模型建立的前提非常重要,因为许多统计方法都要求数据服从正态分布。

  2. 质量控制:在制造业和质量控制中,Anderson-Darling检验可以用来检查生产过程是否产生了正态分布的输出。如果不是,可能需要采取措施来改进过程。

  3. 金融分析:在金融领域,正态分布假设经常用于分析资产价格变动。Anderson-Darling检验可以用来验证这种假设的有效性。

  4. 生物统计学:在生物统计学中,研究人员可能使用Anderson-Darling检验来确定生物数据是否遵循正态分布,例如基因表达数据或生物测量数据。

总之,Anderson-Darling正态性检验是一种重要的统计工具,可用于验证数据是否符合正态分布的假设,从而支持各种领域的分析和决策。

from scipy import stats
import numpy as np# 创建一个示例数据集
data = np.random.normal(0, 1, 100)# 执行Anderson-Darling正态性检验
result = stats.anderson(data)# 输出检验结果
print("Anderson-Darling统计量:", result.statistic)
print("临界值:", result.critical_values)
if result.statistic > result.critical_values[2]:print("数据不服从正态分布")
else:print("数据可能服从正态分布")print("--------------------------")
print("-检验的结果包括Anderson-Darling统计量、临界值、显著性水平以及适配结果,用于判断数据是否服从正态分布-")
print(result)
print(type(result))
print("--------------------------")
# Anderson-Darling统量
print("Anderson-Darling统计量:", result.statistic)# 临界值
print("临界值:", result.critical_values)# 显著性水平
print("显著性水平:", result.significance_level)# 适配结果
fit_result = result.fit_result
print("适配结果 params:", fit_result.params)
print("适配结果 success:", fit_result.success)
print("适配结果 message:", fit_result.message)

Anderson-Darling统计量: 0.8746794117758157
临界值: [0.555 0.632 0.759 0.885 1.053]
数据不服从正态分布
--------------------------
----检验的结果包括Anderson-Darling统计量、临界值、显著性水平以及适配结果,用于判断数据是否服从正态分布-----
AndersonResult(statistic=0.8746794117758157, critical_values=array([0.555, 0.632, 0.759, 0.885, 1.053]), significance_level=array([15. , 10. ,  5. ,  2.5,  1. ]), fit_result=  params: FitParams(loc=-0.00916569417046395, scale=1.012016300795819)
 success: True
 message: '`anderson` successfully fit the distribution to the data.')
<class 'scipy.stats._morestats.AndersonResult'>
--------------------------
Anderson-Darling统计量: 0.8746794117758157
临界值: [0.555 0.632 0.759 0.885 1.053]
显著性水平: [15.  10.   5.   2.5  1. ]
适配结果 params: FitParams(loc=-0.00916569417046395, scale=1.012016300795819)
适配结果 success: True
适配结果 message: `anderson` successfully fit the distribution to the data.
[Finished in 5.0s]

相关文章:

Anderson-Darling正态性检验【重要统计工具】

Anderson-Darling正态性检验是一种用于确定数据集是否服从正态分布&#xff08;也称为高斯分布或钟形曲线分布&#xff09;的统计方法。它基于Anderson和Darling于1954年提出的检验统计量。该检验的基本原理和用途如下&#xff1a; 基本原理&#xff1a; 零假设&#xff08;Nu…...

Ubuntu基于Docker快速配置GDAL的Python、C++环境

本文介绍在Linux的Ubuntu操作系统中&#xff0c;基于Docker快速配置Python、C等不同编程语言均可用的地理数据处理库GDAL的方法。 首先&#xff0c;我们访问GDAL库的Docker镜像官方网站&#xff08;https://github.com/OSGeo/gdal/tree/master/docker&#xff09;。其中&#x…...

<C++> 哈希表模拟实现STL_unordered_set/map

哈希表模板参数的控制 首先需要明确的是&#xff0c;unordered_set是K模型的容器&#xff0c;而unordered_map是KV模型的容器。 要想只用一份哈希表代码同时封装出K模型和KV模型的容器&#xff0c;我们必定要对哈希表的模板参数进行控制。 为了与原哈希表的模板参数进行区分…...

【数据结构与算法】通过双向链表和HashMap实现LRU缓存 详解

这个双向链表采用的是有伪头节点和伪尾节点的 与上一篇文章中单链表的实现不同&#xff0c;区别于在实例化这个链表时就初始化了的伪头节点和伪尾节点&#xff0c;并相互指向&#xff0c;在第一次添加节点时&#xff0c;不需要再考虑空指针指向问题了。 /*** 通过链表与HashMa…...

MySQL的内置函数

文章目录 1. 聚合函数2. group by子句的使用3. 日期函数4. 字符串函5. 数学函数6. 其它函数 1. 聚合函数 COUNT([DISTINCT] expr) 返回查询到的数据的数量 用SELECT COUNT(*) FROM students或者SELECT COUNT(1) FROM students也能查询总个数。 统计本次考试的数学成绩分数去…...

数据结构与算法-(7)---栈的应用-(3)表达式转换

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…...

Lilliefors正态性检验(一种非参数统计方法)

Lilliefors检验&#xff08;也称为Kolmogorov-Smirnov-Lilliefors检验&#xff09;是一种用于检验数据是否符合正态分布的统计检验方法&#xff0c;它是Kolmogorov-Smirnov检验的一种变体&#xff0c;专门用于小样本情况。与K-S检验不同&#xff0c;Lilliefors检验不需要假定数…...

【云原生】配置Kubernetes CronJob自动备份MySQL数据库(单机版)

文章目录 每天自动备份数据库MySQL【云原生】配置Kubernetes CronJob自动备份Clickhouse数据库 每天自动备份数据库 MySQL 引用镜像:databack/mysql-backup,使用文档:https://hub.docker.com/r/databack/mysql-backup 测试、开发环境:每天0点40分执行全库备份操作,备份文…...

基于PSO算法的功率角摆动曲线优化研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

数论知识点总结(一)

文章目录 目录 文章目录 前言 一、数论有哪些 二、题法混讲 1.素数判断,质数,筛法 2.最大公约数和最小公倍数 3.快速幂 4.约数 前言 现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣! 一、数论有哪些 数论 原根,素数判断,质数,筛法最大公约数…...

知识分享 钡铼网关功能介绍:使用SSLTLS 加密,保证MQTT通信安全

背景 为了使不同的设备或系统能够相互通信&#xff0c;让旧有系统和新的系统可以集成&#xff0c;通信更加灵活和可靠。以及将数据从不同的来源收集并传输到不同的目的地&#xff0c;实现数据的集中管理和分发。 通信网关完美克服了这一难题&#xff0c;485或者网口的设备能通过…...

asp.net core mvc区域路由

ASP.NET Core 区域路由&#xff08;Area Routing&#xff09;是一种将应用程序中的路由划分为多个区域的方式&#xff0c;类似于 MVC 的控制器和视图的区域划分。区域路由可以帮助开发人员更好地组织应用程序的代码和路由&#xff0c;并使其更易于维护。 要使用区域路由&#…...

KNN(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…...

Servlet开发-session和cookie理解案例-登录页面

项目展示 进入登录页面&#xff0c;输入正确的用户名和密码以后会自动跳到主页 登录成功以后打印用户名以及上次登录的时间&#xff0c;如果浏览器和客户端都保存有上次登录的信息&#xff0c;则不需要登录就可以进入主页 编码思路 1.首先提供一个登录的前端页面&…...

Polygon Miden:扩展以太坊功能集的ZK-optimized rollup

1. 引言 Polygon Miden定位为zkVM&#xff0c;定于2023年Q4上公开测试网。 zk、zkVM、zkEVM及其未来中指出&#xff0c;当前主要有3种类型的zkVM&#xff0c;括号内为其相应的指令集&#xff1a; mainstream&#xff08;WASM, RISC-V&#xff09;EVM&#xff08;EVM bytecod…...

[题]宝物筛选 #单调队列优化

五、宝物筛选&#xff08;洛谷P1776&#xff09; 题目链接 好家伙&#xff0c;找到了一个之前学习多重背包优化时的错误…… 之前记的笔记还是很有用的…… #include<bits/stdc.h> using namespace std; const int N 1e5 10; int f[N]; int n, m; int v, w, s; int l…...

.NET的键盘Hook管理类,用于禁用键盘输入和切换

一、MyHook帮助类 此类需要编写指定屏蔽的按键&#xff0c;灵活性差。 using System; using System.Runtime.InteropServices; using System.Diagnostics; using System.Windows.Forms; using Microsoft.Win32;namespace MyHookClass {/// <summary>/// 类一/// </su…...

Anaconda Jupyter

&#x1f64c;秋名山码民的主页 &#x1f602;oi退役选手&#xff0c;Java、大数据、单片机、IoT均有所涉猎&#xff0c;热爱技术&#xff0c;技术无罪 &#x1f389;欢迎关注&#x1f50e;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; 获取源码&#xff0c;添加WX 目录 前言An…...

Unity中Shader的前向渲染路径ForwardRenderingPath

文章目录 前言一、前向渲染路径的特点二、渲染方式1、逐像素(效果最好)2、逐顶点(效果次之)3、SH球谐(效果最差) 三、Unity中对灯光设置 后&#xff0c;自动选择对应的渲染方式1、ForwardBase仅用于一个逐像素的平行灯&#xff0c;以及所有的逐顶点与SH2、ForwardAdd用于其他所…...

简历项目优化关键方法论-START

START方法论是非常著名的面试法则&#xff0c;经常被面试官使用的工具 Situation:情况、事情、项目需求是在什么情况下发生Task:任务&#xff0c;你负责的做的是什么Action:动作&#xff0c;针对这样的情况分析&#xff0c;你采用了什么行动方式Result:结果&#xff0c;在这样…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...

SQL进阶之旅 Day 22:批处理与游标优化

【SQL进阶之旅 Day 22】批处理与游标优化 文章简述&#xff08;300字左右&#xff09; 在数据库开发中&#xff0c;面对大量数据的处理任务时&#xff0c;单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”&#xff0c;深入探讨如何通过批量操作和游标技术提…...

使用homeassistant 插件将tasmota 接入到米家

我写一个一个 将本地tasmoat的的设备同通过ha集成到小爱同学的功能&#xff0c;利用了巴法接入小爱的功能&#xff0c;将本地mqtt转发给巴法以实现小爱控制的功能&#xff0c;前提条件。1需要tasmota 设备&#xff0c; 2.在本地搭建了mqtt服务可&#xff0c; 3.搭建了ha 4.在h…...

VUE3 ref 和 useTemplateRef

使用ref来绑定和获取 页面 <headerNav ref"headerNavRef"></headerNav><div click"showRef" ref"buttonRef">refbutton</div>使用ref方法const后面的命名需要跟页面的ref值一样 const buttonRef ref(buttonRef) cons…...