当前位置: 首页 > news >正文

Kolmogorov-Smirnov正态性检验

Kolmogorov-Smirnov正态性检验是一种统计方法,用于检验数据集是否服从正态分布。其基本原理和用途如下:

基本原理:

  1. 假设检验:Kolmogorov-Smirnov检验基于一个假设,即待检验的数据集服从特定的理论正态分布。
  2. 计算累积分布函数:将待检验的数据集按照数值大小排序,然后计算其经验累积分布函数(ECDF)。
  3. 计算理论正态分布的累积分布函数:根据所假设的正态分布的参数(均值和标准差),计算理论正态分布的累积分布函数。
  4. 比较两个累积分布函数:通过比较待检验数据集的ECDF和理论正态分布的累积分布函数,计算出一个统计量,称为K-S统计量(Kolmogorov-Smirnov统计量)。
  5. 判断是否拒绝假设:K-S统计量与一个临界值进行比较,如果K-S统计量大于临界值,则可以拒绝假设,表明数据集不服从正态分布。

用途:

  1. 正态性检验:最常见的用途是检验数据是否服从正态分布。这对于许多统计方法的应用以及假设检验的有效性具有重要意义。
  2. 数据预处理:在一些统计分析中,要求数据服从正态分布,因此可以在分析之前使用K-S检验来验证数据的正态性,并采取适当的数据转换或纠正措施。
  3. 质量控制:在质量控制和生产过程中,可以使用K-S检验来检验观测值是否与预期的正态分布相符,以检测异常或问题。
  4. 金融分析:在金融领域,正态性检验用于分析股价、收益率等金融数据是否服从正态分布,从而影响投资决策。

需要注意的是,Kolmogorov-Smirnov检验对样本量的要求较高,当样本较小时可能不太适用。此外,它对于检测偏离正态分布的具体方式并不敏感,因此在实际应用中,还需要结合其他统计方法和图形分析来综合评估数据的分布情况。

Kolmogorov-Smirnov(K-S)检验对样本量的要求较高,特别是在检验数据是否服从正态分布时。这是因为K-S检验的效力(统计检验的能力)与样本大小有关,较大的样本容易检测到分布的偏差,而较小的样本则可能导致不稳定的结果。

一般来说,当样本容量较小时(通常少于30个数据点),K-S检验可能不够强大,难以明确确定数据的分布情况。在这种情况下,可能需要考虑使用其他正态性检验方法,如Shapiro-Wilk检验或Anderson-Darling检验,它们对小样本的正态性检验效果更好。

总之,确保选择适合样本大小的统计检验方法非常重要,以确保检验的可靠性和准确性。在实际应用中,还应该结合数据的分布特点、领域知识和可视化分析来综合评估数据的正态性。

import numpy as np
from scipy import stats# 生成示例数据,这里使用正态分布生成的数据
np.random.seed(0)
data = np.random.normal(0, 1, 100)  # 均值为0,标准差为1的正态分布数据# 执行K-S检验
ks_statistic, ks_p_value = stats.kstest(data, 'norm')# 打印结果
print("K-S统计量 (D) =", ks_statistic)
print("p值 (p) =", ks_p_value)# 设置显著性水平
alpha = 0.05# 根据p值进行假设检验
if ks_p_value < alpha:print("拒绝原假设:数据不服从正态分布")
else:print("接受原假设:数据服从正态分布")

K-S检验对np.random.normal(均值非0,标准差非1)生成的正态分布数据可能会过于敏感,导致几乎总是拒绝原假设(数据不服从正态分布)。这种情况通常在样本量较大时发生,因为K-S检验趋向于检测到微小的差异。

K-S检验在样本量较大时的敏感性确实是一个已知的问题,尤其是当样本容量远远大于100时,它可能会导致虚假的拒绝。这是因为即使数据来自正态分布,也会因样本量的增加而产生统计上的显著性,从而拒绝原假设。

对于大样本,通常更合适的方法是依赖于直观的图形分析,例如正态概率图(Q-Q图)或直方图,以评估数据的正态性。这些方法可以提供更直观的信息,帮助你判断数据是否符合正态分布,而不受K-S检验的限制。

总之,K-S检验在大样本情况下可能过于敏感,因此在应用时需要谨慎,结合其他检验方法和可视化分析来综合评估数据的分布情况。

相关文章:

Kolmogorov-Smirnov正态性检验

Kolmogorov-Smirnov正态性检验是一种统计方法&#xff0c;用于检验数据集是否服从正态分布。其基本原理和用途如下&#xff1a; 基本原理&#xff1a; 假设检验&#xff1a;Kolmogorov-Smirnov检验基于一个假设&#xff0c;即待检验的数据集服从特定的理论正态分布。计算累积…...

BI神器Power Query(25)-- 使用PQ实现表格多列转换(1/3)

实例需求&#xff1a;原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中&#xff0c;att1、att3、att5为一组&#xff0c;att2、att3、att6为另一组&#xff0c;数据如下所示。 更新表格数据 原始数据表&#xff1a; Col1Col2Att1Att2Att3Att4Att5Att6AAADD…...

windows系统一键开启和关闭虚拟化

说明 跟虚拟化相关的三个程序 一键开启脚本 REM 开启 Hyper-V 服务 pushd "%~dp0"dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txtfor /f %%i in (findstr /i . hyper-v.txt 2^>nul) do dism /online /norestart /add-package:"%Sy…...

NSSCTF做题(5)

[NSSCTF 2022 Spring Recruit]babyphp 代码审计 if(isset($_POST[a])&&!preg_match(/[0-9]/,$_POST[a])&&intval($_POST[a])){ if(isset($_POST[b1])&&$_POST[b2]){ if($_POST[b1]!$_POST[b2]&&md5($_POST[b1])md5($_POST[b2])){…...

java基础题——二维数组的基本应用

1.设计程序按照各个学生的 Java 成绩进行排序 ( 降序 ) 2.设计程序&#xff0c;根据学生总成绩进行排序(降序排列)&#xff0c;并输出学生姓名、每门课程的名称和该学生的成绩、该学生的总成绩 public static void main(String[] args) {String[] names {"安琪拉",…...

Leetcode 2119.反转两次的数字

反转 一个整数意味着倒置它的所有位。 例如&#xff0c;反转 2021 得到 1202 。反转 12300 得到 321 &#xff0c;不保留前导零 。 给你一个整数 num &#xff0c;反转 num 得到 reversed1 &#xff0c;接着反转 reversed1 得到 reversed2 。如果 reversed2 等于 num &#x…...

BI神器Power Query(27)-- 使用PQ实现表格多列转换(3/3)

实例需求&#xff1a;原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中&#xff0c;att1、att3、att5为一组&#xff0c;att2、att3、att6为另一组&#xff0c;数据如下所示。 更新表格数据 原始数据表&#xff1a; Col1Col2Att1Att2Att3Att4Att5Att6AAADD…...

VUE3照本宣科——认识VUE3

VUE3照本宣科——认识VUE3 前言一、命令创建项目1.中文官网2.菜鸟教程 二、VUE3项目目录结构1.public2.src&#xff08;1&#xff09;assets&#xff08;2&#xff09;components 3. .eslintrc.cjs4. .gitignore5. .prettierrc.json6.index.html7.package.json8.README.md9.vit…...

《计算机视觉中的多视图几何》笔记(12)

12 Structure Computation 本章讲述如何在已知基本矩阵 F F F和两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x x↔x′的情况下计算三维空间点 X X X的位置。 文章目录 12 Structure Computation12.1 Problem statement12.2 Linear triangulation methods12.3 Geomet…...

TFT LCD刷新原理及LCD时序参数总结(LCD时序,写的挺好)

cd工作原理目前不了解&#xff0c;日后会在博客中添加这一部分的内容。 1.LCD工作原理[1] 我对LCD的工作原理也仅仅处在了解的地步&#xff0c;下面基于NXP公司对LCD工作原理介绍的ppt来学习一下。 LCD(liquid crystal display,液晶显示屏) 是由液晶段阵列组成&#xff0c;当…...

基于Java的电影院购票系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…...

Linux基础指令(六)

目录 前言1. man 指令2. date 指令3. cal 指令4. bc 指令5. uname 指令结语&#xff1a; 前言 欢迎各位伙伴来到学习 Linux 指令的 第六天&#xff01;&#xff01;&#xff01; 在上一篇文章 Linux基本指令(五) 中&#xff0c;我们通过一段故事线&#xff0c;带大家感性的了…...

Anderson-Darling正态性检验【重要统计工具】

Anderson-Darling正态性检验是一种用于确定数据集是否服从正态分布&#xff08;也称为高斯分布或钟形曲线分布&#xff09;的统计方法。它基于Anderson和Darling于1954年提出的检验统计量。该检验的基本原理和用途如下&#xff1a; 基本原理&#xff1a; 零假设&#xff08;Nu…...

Ubuntu基于Docker快速配置GDAL的Python、C++环境

本文介绍在Linux的Ubuntu操作系统中&#xff0c;基于Docker快速配置Python、C等不同编程语言均可用的地理数据处理库GDAL的方法。 首先&#xff0c;我们访问GDAL库的Docker镜像官方网站&#xff08;https://github.com/OSGeo/gdal/tree/master/docker&#xff09;。其中&#x…...

<C++> 哈希表模拟实现STL_unordered_set/map

哈希表模板参数的控制 首先需要明确的是&#xff0c;unordered_set是K模型的容器&#xff0c;而unordered_map是KV模型的容器。 要想只用一份哈希表代码同时封装出K模型和KV模型的容器&#xff0c;我们必定要对哈希表的模板参数进行控制。 为了与原哈希表的模板参数进行区分…...

【数据结构与算法】通过双向链表和HashMap实现LRU缓存 详解

这个双向链表采用的是有伪头节点和伪尾节点的 与上一篇文章中单链表的实现不同&#xff0c;区别于在实例化这个链表时就初始化了的伪头节点和伪尾节点&#xff0c;并相互指向&#xff0c;在第一次添加节点时&#xff0c;不需要再考虑空指针指向问题了。 /*** 通过链表与HashMa…...

MySQL的内置函数

文章目录 1. 聚合函数2. group by子句的使用3. 日期函数4. 字符串函5. 数学函数6. 其它函数 1. 聚合函数 COUNT([DISTINCT] expr) 返回查询到的数据的数量 用SELECT COUNT(*) FROM students或者SELECT COUNT(1) FROM students也能查询总个数。 统计本次考试的数学成绩分数去…...

数据结构与算法-(7)---栈的应用-(3)表达式转换

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…...

Lilliefors正态性检验(一种非参数统计方法)

Lilliefors检验&#xff08;也称为Kolmogorov-Smirnov-Lilliefors检验&#xff09;是一种用于检验数据是否符合正态分布的统计检验方法&#xff0c;它是Kolmogorov-Smirnov检验的一种变体&#xff0c;专门用于小样本情况。与K-S检验不同&#xff0c;Lilliefors检验不需要假定数…...

【云原生】配置Kubernetes CronJob自动备份MySQL数据库(单机版)

文章目录 每天自动备份数据库MySQL【云原生】配置Kubernetes CronJob自动备份Clickhouse数据库 每天自动备份数据库 MySQL 引用镜像:databack/mysql-backup,使用文档:https://hub.docker.com/r/databack/mysql-backup 测试、开发环境:每天0点40分执行全库备份操作,备份文…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...