当前位置: 首页 > news >正文

深度学习与python theano

文章目录

  • 前言
    • 1.人工神经网络
    • 2.计算机神经网络
    • 3.反向传播
    • 4.梯度下降-cost 函数
      • 1.一维
      • 2.二维
      • 3.局部最优
      • 4.迁移学习
    • 5. theano-GPU-CPU
  • theano介绍
  • 1.安装
  • 2.基本用法
    • 1.回归
    • 2.分类
  • 3.function用法
  • 4.shared 变量
  • 5.activation function
  • 6.Layer层
  • 7.regression 回归例子
  • 8.classification分类学习
  • 9.过拟合
  • 10.正则化
  • 11.save model
  • 12 总结

前言

本章主要介绍深度学习与python theano。
主要整理来自B站:
1.深度学习框架简介 Theano
2.Theano python 神经网络

1.人工神经网络

2.计算机神经网络

3.反向传播

4.梯度下降-cost 函数

1.一维

2.二维

3.局部最优

大部分时间我们只能求得一个局部最优解

4.迁移学习

5. theano-GPU-CPU

tenforflow鼻祖

theano介绍

1.安装

win10安装theano
设置

ldflags = -lblas

window10安装,这里要说明一点的是python3.8安装theano会出现一些非常奇怪的问题,所以这里选用python3.7.

conda create -n theano_env python=3.7
conda activate theano_env
conda install numpy scipy mkl-service libpython m2w64-toolchain#如果想要安装的快点,可以使用国内的镜像
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple theano

安装后出现了下列问题:
WARNING (theano.tensor.blas): Failed to import scipy.linalg.blas, and Theano flag blas.ldflags is empty. Falling back on slower implementations for dot(matrix, vector), dot(vector, matrix) and dot(vector, vector) (DLL load failed: 找不到指定的模块。)
不过想了一下,自己也只是学习一下而已,慢就慢吧,不用C的

2.基本用法

1.回归

拟合曲线

# View more python tutorials on my Youtube and Youku channel!!!# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial# 10 - visualize result
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import theano
import theano.tensor as T
import numpy as np
import matplotlib.pyplot as pltclass Layer(object):def __init__(self, inputs, in_size, out_size, activation_function=None):self.W = theano.shared(np.random.normal(0, 1, (in_size, out_size)))self.b = theano.shared(np.zeros((out_size, )) + 0.1)self.Wx_plus_b = T.dot(inputs, self.W) + self.bself.activation_function = activation_functionif activation_function is None:self.outputs = self.Wx_plus_belse:self.outputs = self.activation_function(self.Wx_plus_b)# Make up some fake data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise        # y = x^2 - 0.5# show the fake data
plt.scatter(x_data, y_data)
plt.show()# determine the inputs dtype
x = T.dmatrix("x")
y = T.dmatrix("y")# add layers
l1 = Layer(x, 1, 10, T.nnet.relu)
l2 = Layer(l1.outputs, 10, 1, None)# compute the cost
cost = T.mean(T.square(l2.outputs - y))# compute the gradients
gW1, gb1, gW2, gb2 = T.grad(cost, [l1.W, l1.b, l2.W, l2.b])# apply gradient descent
learning_rate = 0.05
train = theano.function(inputs=[x, y],outputs=[cost],updates=[(l1.W, l1.W - learning_rate * gW1),(l1.b, l1.b - learning_rate * gb1),(l2.W, l2.W - learning_rate * gW2),(l2.b, l2.b - learning_rate * gb2)])# prediction
predict = theano.function(inputs=[x], outputs=l2.outputs)# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()for i in range(1000):# trainingerr = train(x_data, y_data)if i % 50 == 0:# to visualize the result and improvementtry:ax.lines.remove(lines[0])except Exception:passprediction_value = predict(x_data)# plot the predictionlines = ax.plot(x_data, prediction_value, 'r-', lw=5)plt.pause(.5)

2.分类

3.function用法

4.shared 变量

5.activation function

6.Layer层

7.regression 回归例子

8.classification分类学习

9.过拟合

10.正则化

11.save model

12 总结

相关文章:

深度学习与python theano

文章目录 前言1.人工神经网络2.计算机神经网络3.反向传播4.梯度下降-cost 函数1.一维2.二维3.局部最优4.迁移学习 5. theano-GPU-CPU theano介绍1.安装2.基本用法1.回归2.分类 3.function用法4.shared 变量5.activation function6.Layer层7.regression 回归例子8.classificatio…...

【算法优选】双指针专题——贰

文章目录 😎前言🌲[快乐数](https://leetcode.cn/problems/happy-number/)🚩题目描述🚩题⽬分析:🚩算法思路:🚩代码实现: 🎋[盛水最多的容器](https://leetco…...

AI智能电话机器人实用吗

近几年,人工智能得到很大的发展,同时语音识别技术的不断完善,很多以语音识别为基础的应用涌现出来,尤其是最近3年,出现了很多智能电话机器人。百度开发者大会上展示了百度智能客服也吸引了很多人对智能电话机器人的兴趣…...

网络爬虫--伪装浏览器

从用户请求的Headers反反爬 在访问某些网站的时候,网站通常会用判断访问是否带有头文件来鉴别该访问是否为爬虫,用来作为反爬取的一种策略。很多网站都会对Headers的User-Agent进行检测,还有一部分网站会对Referer进行检测(一些资…...

C/C++程序的内存开辟

前面我们说过,计算机中内存分为三个区域:栈区,堆区,静态区 但是这只是个简化的版本,接下来我们仔细看看内存区域的划分 C/C程序内存分配的几个区域: 栈区(stack):在执行…...

【Java 进阶篇】JDBC DriverManager 详解

JDBC(Java Database Connectivity)是 Java 标准库中用于与数据库进行交互的 API。它允许 Java 应用程序连接到各种不同的数据库管理系统(DBMS),执行 SQL 查询和更新操作,以及处理数据库事务。在 JDBC 中&am…...

2023年Linux总结常用命令

1.常用命令 1.1创建文件夹 mkdir -p forever/my 1.2当前目录 pwd 1.3创建文件 touch 1.txt 1.4查看文件 cat 1.txt 1.5复制文件 说明:-r是复制文件夹 cp -r my myCopy 1.6删除文件 说明:-r带包删除文件夹,-f表示强制删除(保存问题) rm -r…...

Mybatis3详解 之 全局配置文件详解

1、全局配置文件 前面我们看到的Mybatis全局文件并没有全部列举出来&#xff0c;所以这一章我们来详细的介绍一遍&#xff0c;Mybatis的全局配置文件并不是很复杂&#xff0c;它的所有元素和代码如下所示&#xff1a; <?xml version"1.0" encoding"UTF-8&…...

力扣-345.反转字符串中的元音字母

Idea 将s中的元音字母存在字符串sv中&#xff0c;并且使用一个数组依次存储元音字母的下标。 然后将字符串sv进行反转&#xff0c;并遍历元音下标数组&#xff0c;将反转后的字符串sv依次插入到源字符串s中 AC Code class Solution { public:string reverseVowels(string s) {…...

643. 子数组最大平均数I(滑动窗口)

目录 一、题目 二、代码 一、题目 643. 子数组最大平均数 I - 力扣&#xff08;LeetCode&#xff09; 二、代码 class Solution { public:double findMaxAverage(vector<int>& nums, int k) {double Average INT_MIN;double sum nums[0];int left 0, right 0…...

Java 21 新特性:虚拟线程(Virtual Threads)

I often take exercise. Why only yesterday I had breakfast in bed. 在Java 21中&#xff0c;引入了虚拟线程&#xff08;Virtual Threads&#xff09;来简化和增强并发性&#xff0c;这使得在Java中编程并发程序更容易、更高效。 虚拟线程&#xff0c;也称为“用户模式线程…...

18scala笔记

Scala2.12 视频地址 1 入门 1.1 发展历史 … 1.2 Scala 和 Java Scala Java 编写代码使用scalac编译成.class字节码文件scala .class文件 执行代码 1.3 特点 1.4 安装 视频地址 注意配置好环境变量 简单代码 1.5 编译文件 编译scala文件会产生两个.class文件 使用java…...

【LeetCode周赛】LeetCode第365场周赛

目录 有序三元组中的最大值 I有序三元组中的最大值 II无限数组的最短子数组 有序三元组中的最大值 I 给你一个下标从 0 开始的整数数组nums。 请你从所有满足 i < j < k 的下标三元组 (i, j, k) 中&#xff0c;找出并返回下标三元组的最大值。如果所有满足条件的三元组的…...

响应式设计的实现方式

一. 什么是响应式 响应式网站设计是一种网络页面设计布局。页面的设计与开发应当根据用户行为以及设备环境&#xff08;系统平台&#xff0c;屏幕尺寸&#xff0c;屏幕定向等&#xff09;进行相应的响应和调整。 响应式网站常见特点&#xff1a; 1. 同时适配PC平板手机。 2…...

PHP 反序列化漏洞:__PHP_Incomplete_Class 与 serialize(unserialize($x)) !== $x;

文章目录 参考环境声明__PHP_Incomplete_Class灵显为什么需要 __PHP_Incomplete_Class&#xff1f;不可访问的属性 serialize(unserialize($x)) $x;serialize(unserialize($x)) ! $x;雾现__PHP_Incomplete_Class 对象与其序列化文本的差异试构造 __PHP__Incomplete_Class 对象…...

TempleteMethod

TempleteMethod 动机 在软件构建过程中&#xff0c;对于某一项任务&#xff0c;它常常有稳定的整体操作结构&#xff0c;但各个子步骤却有很多改变的需求&#xff0c;或者由于固有的原因 &#xff08;比如框架与应用之间的关系&#xff09;而无法和任务的整体结构同时实现。如…...

1558. 得到目标数组的最少函数调用次数

1558. 得到目标数组的最少函数调用次数 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a; 原题链接&#xff1a; 1558. 得到目标数组的最少函数调用次数 https://leetcode.cn/problems/minimum-numbers-of-function-calls-to-make-target…...

子域名扫描, 后台扫描

子域名和后台扫描 一, 子域名扫描 在渗透测试的早期阶段&#xff0c;子域名扫描是一个非常重要的步骤&#xff0c;它有助于识别目标组织的网络结构和在线资源。 子域名扫描应该在获得适当的权限和授权的情况下进行&#xff0c;以确保所有活动都是合法和合规的。 1. 原因与目…...

毛玻璃带有光影效果的卡片

效果展示 页面结构组成 从效果展示可以看到&#xff0c;页面的主要元素是卡片&#xff0c;卡片的内容呈现上都是比较常规的布局&#xff0c;只是卡片上带有光影效果。 CSS / JavaScript 知识点 transformVanillaTilt.js 使用 页面基础结构实现 <div class"contain…...

【Java】面向过程和面向对象思想||对象和类

1.面向过程和面向对象思想 两者都贯穿于软件分析、设计和开发的各个阶段&#xff0c;对应面向对象就分别称为面向对象的分析&#xff08;OOA&#xff09;、面向对象的设计&#xff08;OOD&#xff09;和面向对象的编程&#xff08;OOP&#xff09;。C语言是一种典型的面向过程语…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...