当前位置: 首页 > news >正文

【数据结构】排序(2)—冒泡排序 快速排序

   

                             

目录

一. 冒泡排序

基本思想

代码实现

时间和空间复杂度

稳定性

二. 快速排序

基本思想

代码实现

hoare法

挖坑法

前后指针法

时间和空间复杂度

稳定性


一. 冒泡排序

       基本思想

           冒泡排序是一种交换排序。两两比较数组元素,如果是逆序(即排列顺序与排序后的顺序相     反)就交换,直到所有元素都有序为止。

      方法步骤:                   

          ① 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

          ② 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后                  的元素会是最大的数

          ③ 针对所有的元素重复以上的步骤,除了最后一个。

          ④ 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较

        图示

        

代码实现

  

//冒泡排序
void BubbleSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int flag = 0; //作为判断是否交换的标志for (int j = 1; j < n - i; j++){if (a[j-1] > a[j]){flag = 1;int tmp = a[j-1]; //交换a[j-1] = a[j];a[j] = tmp;}}if (flag == 0)break;}
}

时间和空间复杂度

     若初始序列为正序序列,则只需进行一趟排序,在排序过程中进行n-1次比较不移动元素;若初始序列为逆序序列,则需进行n-1趟排序n(n-1) / 2次比较,每次比较都需要移动 3 次,移动次数为  3n(n-1) / 2.

    时间复杂度:O(n^2)

    空间复杂度:O(1)

稳定性

     冒泡排序:稳定排序

二. 快速排序

      基本思想

       任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止
 

     方法步骤:       

  1. 从数列中挑出一个元素,称为 "基准"(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

     图示

代码实现

   

 hoare法

        思想方法:

           定义两个指针 left 和 right,分别指向左边和右边,左指针从左向右找大( 大于pivotkey),右      指针从右向左找小(小于pivotkey),左大右小就交换,相遇时与基准值交换

         图解:

               

        

 

int PartSort(int* a, int left, int right) //给数组分区,返回枢轴元素下标
{int pivotkey = left;while (left < right){//右边找比pivotkey小的while (left < right && a[right] >= a[pivotkey])right--;//左边找比pivotkey大的while (left < right && a[left] <= a[pivotkey])left++;Swap(&a[left], &a[right]);}Swap(&a[left], &a[pivotkey]); //把记录的枢轴元素,交换到枢轴位置return left;   //返回枢轴所在的位置下标
}

   

 挖坑法

      思想方法

              定义两个指针 left 和 right,分别指向左边和右边,先将第一个数据元素放在临时变量 pivotkey 中,形成一个坑位右指针先走,当指向的值小于 pivotkey 就停下,形成新的坑位;让左指针走,当指向的值大于 pivotkey 就停下,使其形成此次的新坑位,直到两指针相遇,把pivotkey的值放入坑中。

 

        图解:

         

           


int PartSort(int* a, int left, int right) //给数组分区,返回枢轴元素下标
{int pivotkey = a[left]; //保存第一个数据元素的值while (left < right){while (left < right && a[right] >= pivotkey) //找小{right--;}a[left] = a[right]; //右边形成新的坑while (left < right && a[left] <= pivotkey) //找大{left++;}a[right] = a[left]; //左边形成新的坑}a[left] = pivotkey;return left;
}

  前后指针法

      思想方法:

        定义两个指针 prev 和 cur ,初始时,prev指针指向序列开头,cur指针指向prev指针的后一个位置;cur的值与pivotkey的值比较,cur的值小,prev先后移一步,cur再后移;当cur的值大时,就prev的值与cur的值交换;直到cur为空时,prev的值与pivotkey的值交换。

       图解:

              

       


int PartSort(int* a, int left, int right) //给数组分区,返回枢轴元素下标
{int prev = left;int cur = left + 1;int pivotkey = left;while (cur <= right){if (a[cur] < a[pivotkey] && ++prev != cur)Swap(&a[cur], &a[prev]);cur++;}Swap(&a[pivotkey], &a[prev]);return prev;
}

时间和空间复杂度

         在最优情况下,partition每次都划的很均匀,此时时间复杂度为O(nlogn);平均情况下,其时   间复杂度也为O(nlogn)。在最坏的情况下,待排序的序列为正序或逆序时,递归树是一棵斜树,   此时,快速排序会堕落为冒泡排序,其时间复杂度为O(n^2),不过可以通过优化,使其提升为O(nlogn),总的来说还是O(nlogn)。

        空间复杂度,主要是递归造成的栈空间的使用,最好情况及平均情况下,树的递归深度为logn,空间复杂度均为O(logn);最坏情况,空间复杂度为O(n).

       时间复杂度:O(nlogn)

       空间复杂度:O(logn)

  稳定性

      由于元素的比较和交换是跳跃进行的,因此

      快速排序:不稳定排序

相关文章:

【数据结构】排序(2)—冒泡排序 快速排序

目录 一. 冒泡排序 基本思想 代码实现 时间和空间复杂度 稳定性 二. 快速排序 基本思想 代码实现 hoare法 挖坑法 前后指针法 时间和空间复杂度 稳定性 一. 冒泡排序 基本思想 冒泡排序是一种交换排序。两两比较数组元素&#xff0c;如果是逆序(即排列顺序与排序后…...

Redis与分布式-分布式锁

接上文 Redis与分布式-集群搭建 1.分布式锁 为了解决上述问题&#xff0c;可以利用分布式锁来实现。 重新复制一份redis&#xff0c;配置文件都是刚下载时候的不用更改&#xff0c;然后启动redis服务和redis客户。 redis存在这样的命令&#xff1a;和set命令差不多&#xff0…...

docker安装nginx详解

创建html的挂载目录docker volume create nginx8020 创建conf的挂载目录mkdir -p /opt/nginx/conf 拉取镜像docker pull nginx 初始化挂载目录的配置文件docker run --rm --name nginx-short -p 8020:80 -d nginx docker cp nginx-short:/etc/nginx/nginx.conf /opt/nginx/…...

优化思考二

优化思考一_云湖在成长的博客-CSDN博客 翻到了两年前写文章&#xff0c;有了不一样的观点。 先说一样的想法吧&#xff1a;数据&#xff08;输入&#xff09;>>优化模型&#xff08;处理&#xff09;>>结果方案&#xff08;输出&#xff09;。优化是其中最重要的…...

大模型微调概览

文章目录 微调 和 高效微调高效微调技术方法概述高效微调方法一:LoRA高效微调方法二: Prefix Tuning高效微调方法三: Prompt Tuning高效微调方法四: P-Tuning v2基于强化学习的进阶微调方法RLHF 训练流程微调 和 高效微调 微调,Fine-Tuning, 一般指全参数的微调(全量微调),…...

利用norm.ppfnorm.interval分别计算正态置信区间[实例]

scipy.stats.norm.ppf用于计算正态分布的累积分布函数CDF的逆函数&#xff0c;也称为百分位点函数。它的作用是根据给定的概率值&#xff0c;计算对应的随机变量值。scipy.stats.norm.interval&#xff1a;用于计算正态分布的置信区间&#xff0c;可指定均值和标准差。scipy.st…...

计算机网络各层设备

计算机网络通常被分为七层&#xff0c;每一层都有对应的设备。以下是各层设备的简要介绍&#xff1a; 物理层&#xff08;Physical Layer&#xff09;&#xff1a;负责传输二进制数据位流的物理媒体和设备&#xff0c;例如网线、光纤、中继器、集线器等。 数据链路层&#xf…...

java this用法

在Java中&#xff0c;this是一个关键字&#xff0c;表示当前对象。它可以用来引用当前对象的实例变量、实例方法或者调用当前对象的构造方法。在本文中&#xff0c;我们将深入探讨Java中this关键字的用法。 1. 引用当前对象的实例变量 在Java中&#xff0c;this关键字可以用来…...

【AI视野·今日NLP 自然语言处理论文速览 第四十六期】Tue, 3 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 3 Oct 2023 (showing first 100 of 110 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Its MBR All the Way Down: Modern Generation Techniques Through the …...

Unity ddx与ddy

有关Unity的dx与dy的概念 引用的文章 1link 2link 3link 4link 有关概念 我们知道在光栅化的时刻&#xff0c;GPUs会在同一时刻并行运行很多Fragment Shader&#xff0c;但是并不是一个pixel一个pixel去执行的&#xff0c;而是将其组织在2x2的一组pixels分块中&#xff0c;…...

bootstrap.xml 和applicaiton.properties和applicaiton.yml的区别和联系

当谈到Spring Boot应用程序的配置时&#xff0c;有三个关键文件经常被提到&#xff1a;bootstrap.xml、application.properties和application.yml。这些文件在应用程序的不同阶段起着不同的作用&#xff0c;并在配置应用程序属性时有一些区别和联系。本文将探讨这些文件的作用、…...

基于被囊群优化的BP神经网络(分类应用) - 附代码

基于被囊群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于被囊群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.被囊群优化BP神经网络3.1 BP神经网络参数设置3.2 被囊群算法应用 4.测试结果&#x…...

我的第一个react.js 的router工程

react.js 开发的时候&#xff0c;都是针对一个页面的&#xff0c;多个页面就要用Router了&#xff0c;本文介绍我在vscode 下的第一个router 工程。 我在学习react.js 前端开发&#xff0c;学到router 路由的时候有点犯难了。经过1-2天的努力&#xff0c;终于完成了第一个工程…...

XXPermissions权限请求框架

官网 项目地址&#xff1a;Github博文地址&#xff1a;一句代码搞定权限请求&#xff0c;从未如此简单 框架亮点 一马当先&#xff1a;首款适配 Android 13 的权限请求框架简洁易用&#xff1a;采用链式调用的方式&#xff0c;使用只需一句代码体积感人&#xff1a;功能在同类…...

远程代码执行渗透测试—Server2128

远程代码执行渗透测试 任务环境说明&#xff1a; √ 服务器场景&#xff1a;Server2128&#xff08;开放链接&#xff09; √服务器场景操作系统&#xff1a;Windows √服务器用户名&#xff1a;Administrator密码&#xff1a;pssw0rd 1.找出靶机桌面上文件夹1中的文件RCEBac…...

阿里云关系型数据库有哪些?RDS云数据库汇总

阿里云RDS关系型数据库大全&#xff0c;关系型数据库包括MySQL版、PolarDB、PostgreSQL、SQL Server和MariaDB等&#xff0c;NoSQL数据库如Redis、Tair、Lindorm和MongoDB&#xff0c;阿里云百科分享阿里云RDS关系型数据库大全&#xff1a; 目录 阿里云RDS关系型数据库大全 …...

Linux--socket编程--服务端代码

查看struct sockaddr_in包含的东西&#xff1a; 在/user/include下搜索&#xff1a;grep "struct sockaddr_in { " * -nir r : 递归 i &#xff1a; 不区分大小写 n : 显示行号 socket编程–服务端代码 /* 1、调用 socket 创建套接字 2、调用 bind 添加地址 3、lis…...

安装Vue脚手架图文详解教程

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 预备工作 在安装Vue脚手架之前&#xff0c;请确保您已经正确安装了npm&#xff1b;假若还尚未安装npm&#xff0c;请你参考 Node.js安装教程图文详解。 安装Vue脚手架 请…...

宠物医院必备,介绍一款宠物疫苗接种管理软件

在当今社会&#xff0c;养宠物已经成为越来越多人的生活方式&#xff0c;宠物疫苗接种已是宠物医院的重要工作&#xff0c;但是目前绝大多数的宠物医院对疫苗接种的管理&#xff0c;还是采取人工登记方式&#xff0c;不仅效率低下&#xff0c;而且无法做到疫苗接种到期自动提醒…...

哈哈,我保研985了,之后会出一期保研经验分享

哈哈&#xff0c;我保研了&#xff0c;之后会出一期保研经验分享 个人背景 学校&#xff1a;河南某四非&#xff0c;计算机科学与技术专业英语成绩&#xff1a;四级439&#xff0c;六级438&#xff08;夏令营无六级&#xff09;科研经历&#xff1a;一个软著、国家级大创&…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

sshd代码修改banner

sshd服务连接之后会收到字符串&#xff1a; SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢&#xff1f; 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头&#xff0c…...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...