LeetCode 面试题 08.04. 幂集
文章目录
- 一、题目
- 二、C# 题解
一、题目
幂集。编写一种方法,返回某集合的所有子集。集合中不包含重复的元素。
说明:
- 解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
点击此处跳转题目。
二、C# 题解
记集合为 Q(n),n 为集合中元素个数(不重复)。Sub(i) 表示集合中 i 个元素组成的所有子集,则有如下递推关系:
S u b ( i + 1 ) = S u b ( i ) ∪ S u b ( i ) . A d d ( e l e m ( i + 1 ) ) Sub(i +1)=Sub(i) \cup Sub(i).Add(elem(i+1)) Sub(i+1)=Sub(i)∪Sub(i).Add(elem(i+1))
其中, e l e m ( i + 1 ) elem(i+1) elem(i+1) 表示新增加的第 i + 1 i + 1 i+1 个元素。以集合 { 1 , 2 , 3 } \{1,2,3\} {1,2,3} 为例:
- S u b ( { 0 } ) = { { } } Sub(\{0\})=\{\{\}\} Sub({0})={{}}
- S u b ( { 0 , 1 } ) = { { } } ∪ { { 1 } } = { { } , { 1 } } Sub(\{0,1\})=\{\{\}\}\cup\{\{\bold{1}\}\}=\{\{\},\{1\}\} Sub({0,1})={{}}∪{{1}}={{},{1}}
- S u b ( { 0 , 1 , 2 } ) = { { } , { 1 } } ∪ { { 2 } , { 1 , 2 } } = { { } , { 1 } , { 2 } , { 1 , 2 } } Sub(\{0,1,2\})=\{\{\},\{1\}\}\cup\{\{\bold{2}\},\{1,\bold{2}\}\}=\{\{\},\{1\},\{2\},\{1,2\}\} Sub({0,1,2})={{},{1}}∪{{2},{1,2}}={{},{1},{2},{1,2}}
- S u b ( { 0 , 1 , 2 , 3 } ) = { { } , { 1 } , { 2 } , { 1 , 2 } } ∪ { { 3 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } } = { { } , { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } } Sub(\{0,1,2,3\})=\{\{\},\{1\},\{2\},\{1,2\}\}\cup\{\{\bold{3}\},\{1,\bold{3}\},\{2,\bold{3}\},\{1,2,\bold{3}\}\}=\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} Sub({0,1,2,3})={{},{1},{2},{1,2}}∪{{3},{1,3},{2,3},{1,2,3}}={{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
public class Solution {public IList<IList<int>> Subsets(int[] nums) {IList<IList<int>> ans = new List<IList<int>>();ans.Add(new List<int>()); // 添加空集if (nums.Length == 0) return ans;foreach (int t in nums) {int cnt = ans.Count; // 取出原来的长度for (int j = 0; j < cnt; j++) {// 复制原来所有的子集,将新元素添加进去List<int> tmp = new List<int>(ans[j]) { t }; ans.Add(tmp);}}return ans;}
}
- 时间:128 ms,击败 100.00% 使用 C# 的用户
- 内存:40.76 MB,击败 100.00% 使用 C# 的用户
相关文章:
LeetCode 面试题 08.04. 幂集
文章目录 一、题目二、C# 题解 一、题目 幂集。编写一种方法,返回某集合的所有子集。集合中不包含重复的元素。 说明: 解集不能包含重复的子集。 示例: 输入: nums [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1…...
【m_listCtrl !=NULL有多个运算符与操作数匹配】2023/9/21 上午11:03:44
2023/9/21 上午11:03:44 m_listCtrl !=NULL有多个运算符与操作数匹配 2023/9/21 上午11:04:00 如果您在编译或运行代码时遇到"M_listCtrl != NULL有多个运算符与操作数匹配"的错误提示,这通常是由于以下几个原因之一: 错误使用运算符:在条件判断语句中,应该使…...
Logrus 集成 color 库实现自定义日志颜色输出字符原理
问题背景 下列代码实现了使用 Logurs 日志框架输出日志时根据级别不同,使用对应的自定义颜色进行输出。那么思考下代码的逻辑是怎么实现的呢? 效果如下: 代码如下: import ("fmt""github.com/sirupsen/logrus&q…...
【Java-LangChain:使用 ChatGPT API 搭建系统-2】语言模型,提问范式与 Token
第二章 语言模型,提问范式与 Token 在本章中,我们将和您分享大型语言模型(LLM)的工作原理、训练方式以及分词器(tokenizer)等细节对 LLM 输出的影响。我们还将介绍 LLM 的提问范式(chat format…...
想要精通算法和SQL的成长之路 - 最长连续序列
想要精通算法和SQL的成长之路 - 最长连续序列 前言一. 最长连续序列1.1 并查集数据结构创建1.2 find 查找1.3 union 合并操作1.4 最终代码 前言 想要精通算法和SQL的成长之路 - 系列导航 并查集的运用 一. 最长连续序列 原题链接 这个题目,如何使用并查集是一个小难…...
UG NX二次开发(C#)- 制图(Draft)-工程图框选制图曲线并输出制图曲线的信息
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、在UG NX中打开一个装配体模型3、进入工程制图模块,创建工程制图4、在VS中创建一个工程项目5、在Main()中添加选择的代码(UFun)6、在Main()中添加选择的代码(NXOpen)7、框选解决方案…...
1.7.C++项目:仿muduo库实现并发服务器之Poller模块的设计
项目完整在: 文章目录 一、Poller模块:描述符IO事件监控模块二、提供的功能三、实现思想(一)功能(二)意义(三)功能设计 四、封装思想五、代码(一)框架&#…...
Flutter笔记:build方法、构建上下文BuildContext解析
Flutter笔记 build 方法解析 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/133556333 本文主要介绍Flu…...
composer 安装和基本使用
php的包管理软件 如果没有安装php,参考这篇:添加链接描述 1.composer安装 composer官网 需要先安装好php,同时php -v输出有信息 cd /usr/localphp -r "copy(https://install.phpcomposer.com/installer, composer-setup.php);"…...
Ubuntu配置深度学习环境(TensorFlow和PyTorch)
文章目录 一、CUDA安装1.1 安装显卡驱动1.2 CUDA安装1.3 安装cuDNN 二、Anaconda安装三、安装TensorFlow和pyTorch3.1 安装pyTorch3.2 安装TensorFlow2 四、安装pyCharm4.1 pyCharm的安装4.2 关联anaconda的Python解释器 五、VScode配置anaconda的Python虚拟环境 前言ÿ…...
【产品经理】国内企业服务SAAS平台的生存与发展
SaaS在国外发展的比较成熟,甚至已经成为了主流,但在国内这几年才掀起热潮;企业服务SaaS平台在少部分行业发展较快,大部分行业在国内还处于起步、探索阶段;SaaS将如何再国内生存和发展? 在企业服务行业做了五…...
【vue 首屏加载优化】
Vue 首屏加载优化指的是通过一系列的技术手段,尽可能地缩短首屏(即页面中可见的部分)的加载时间,提高用户体验。 以下是一些常见的 Vue 首屏加载优化技巧: 使用 Vue SSR(服务端渲染)࿱…...
docker--redis容器部署及与SpringBoot整合-I
文章目录 1. 容器化部署docker2. 如何与SpringBoot集成2.1. 引入依赖2.2. 添加配置信息2.3. 测试类2.4. 内置的Spring Beansredis 主流客户端比较redissonlettucejedis参考1. 容器化部署docker 拉取镜像创建数据目录data 及 配置目录conf创建配置文件redis.conf启动redis容器进…...
力扣 -- 518. 零钱兑换 II(完全背包问题)
解题步骤: 参考代码: 未优化代码: class Solution { public:int change(int amount, vector<int>& coins) {int ncoins.size();//多开一行,多开一列vector<vector<int>> dp(n1,vector<int>(amount1…...
一文搞懂UART通信协议
目录 1、UART简介 2、UART特性 3、UART协议帧 3.1、起始位 3.2、数据位 3.3、奇偶校验位 3.4、停止位 4、UART通信步骤 1、UART简介 UART(Universal Asynchronous Receiver/Transmitter,通用异步收发器)是一种双向、串行、异步的通信…...
【算法|动态规划No.7】leetcode300. 最长递增子序列
个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…...
LeetCode 54 螺旋矩阵
先贴代码 class Solution {public int[][] generateMatrix(int n) {int left 0;int right n-1;int up 0;int down n-1;int[][] result new int[n][n];int number 0;while(left < right && up < down) {for(int ileft;i<right;i) {number;result[up]…...
OpenCV 概念、整体架构、各模块主要功能
文章目录 1. OpenCV 概念2 OpenCV主要模块3 各模块 详细介绍3.1 calib3d 标定3.2 core 核心功能模块3.4 features2d 二维特征3.5 flann 快速近似近邻算法库3.7 highgui 高级图形用户界面3.9 imgproc 图像处理模块3.10 ml 机器学习模块3.11 objdetect 目标检测模块3.12 photo 数…...
组合数与莫队——组合数前缀和
用莫队求组合数是一种常见套路 莫队求 S ( n , m ) ∑ i 0 m ( n i ) S(n,m)\sum_{i0}^m\binom n i S(n,m)∑i0m(in) S ( n , m 1 ) S(n,m1) S(n,m1) 直接做个差,然后就相当于加上 ( n i 1 ) \binom n {i1} (i1n) 求 S ( n 1 , m ) S(n1,m) S(n1,m)…...
stm32之雨滴传感器使用记录
一、简介 雨滴传感器、烟雾传感器(MQ2)、轨迹传感器、干黄管等的原理都类似,都是将检测到的信号通过LM393进行处理之后再输出,可以输出数字信号DO(0和1)和模拟信号A0。 雨滴传感器在正常情况下是AO输出的是…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
