sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第一周测验
课程2_第1周_测验题
目录:目录
第一题
1.如果你有10,000,000个例子,你会如何划分训练/验证/测试集?
A. 【 】33%训练,33%验证,33%测试
B. 【 】60%训练,20%验证,20%测试
C. 【 】98%训练,1%验证,20%测试
答案:
C.【 √ 】98%训练,1%验证,20%测试
第二题
2.验证集和测试集应该:
A. 【 】来自同一分布
B. 【 】来自不同分布
C. 【 】完全相同(一样的(x, y)对)
D. 【 】数据数量应该相同
答案:
A.【 √ 】来自同一分布
第三题
3.如果你的神经网络方差很高,下列哪个尝试是可能解决问题的?
A. 【 】添加正则项
B. 【 】获取更多测试数据
C. 【 】增加每个隐藏层的神经元数量
D. 【 】用更深的神经网络
E. 【 】用更多的训练数据
答案:
A.【 √ 】添加正则项
E.【 √ 】用更多的训练数据
第四题
4.你正在为苹果,香蕉和橘子制作分类器。 假设您的分类器在训练集上有0.5%的错误,以及验证集上有7%的错误。 以下哪项尝试是有希望改善你的分类器的分类效果的?
A. 【 】增大正则化参数 λ \lambda λ
B. 【 】减小正则化参数 λ \lambda λ
C. 【 】获取更多训练数据
D. 【 】用更大的神经网络
答案:
A.【 √ 】增大正则化参数 λ \lambda λ
C.【 √ 】获取更多训练数据
第五题
5.什么是权重衰减?
A. 【 】正则化技术(例如L2正则化)导致梯度下降在每次迭代时权重收缩
B. 【 】在训练过程中逐渐降低学习率的过程
C. 【 】如果神经网络是在噪声数据下训练的,那么神经网络的权值会逐渐损坏
D. 【 】通过对权重值设置上限来避免梯度消失的技术
答案:
A.【 √ 】正则化技术(例如L2正则化)导致梯度下降在每次迭代时权重收缩
第六题
6.当你增大正则化的超参数 λ \lambda λ时会发生什么?
A. 【 】权重变小(接近0)
B. 【 】权重变大(远离0)
C. 【 】2倍的 λ \lambda λ导致2倍的权重
D. 【 】每次迭代,梯度下降采取更大的步距(与 λ \lambda λ成正比)
答案:
A.【 √ 】权重变小(接近0)
第七题
7.在测试时候使用dropout:
A. 【 】不随机关闭神经元,但在训练中使用的计算中保留1 / keep_prob因子
B. 【 】随机关闭神经元,在训练中使用的计算中保留1 / keep_prob因子
C. 【 】随机关闭神经元,但不要在训练中使用的计算中保留1 / keep_prob因子
D. 【 】不随机关闭神经元,也不要在训练中使用的计算中保留1 / keep_prob因子
答案:
D.【 √ 】不随机关闭神经元,也不要在训练中使用的计算中保留1 / keep_prob因子
第八题
8.将参数keep_prob从(比如说)0.5增加到0.6可能会导致以下情况(选出所有正确项):
A. 【 】正则化效应被增强
B. 【 】正则化效应被减弱
C. 【 】训练集的误差会增加
D. 【 】训练集的误差会减小
答案:
B.【 √ 】正则化效应被减弱
D.【 √ 】训练集的误差会减小
第九题
9.以下哪些技术可用于减少方差(减少过拟合)?(选出所有正确项)
A. 【 】梯度消失
B. 【 】数据扩充
C. 【 】Dropout
D. 【 】梯度检查
E. 【 】Xavier初始化
F. 【 】L2正则化
G. 【 】梯度爆炸
答案:
B.【 √ 】数据扩充
C.【 √ 】Dropout
F.【 √ 】L2正则化
第十题
10.为什么要对输入 x x x进行归一化?
A. 【 】让参数初始化更快
B. 【 】让代价函数更快地优化
C. 【 】更容易做数据可视化
D. 【 】是另一种正则化——有助减少方差
答案:
B.【 √ 】让代价函数更快地优化
相关文章:
sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第一周测验
课程2_第1周_测验题 目录:目录 第一题 1.如果你有10,000,000个例子,你会如何划分训练/验证/测试集? A. 【 】33%训练,33%验证,33%测试 B. 【 】60%训练,20%验证,20%测试 C. 【 】98…...
(粗糙的笔记)动态规划
动态规划算法框架: 问题结构分析递推关系建立自底向上计算最优方案追踪 背包问题 输入: n n n个商品组成的集合 O O O,每个商品有两个属性 v i v_i vi和 p i p_i pi,分别表示体积和价格背包容量 C C C 输出: …...
Kaggle - LLM Science Exam上:赛事概述、数据收集、BERT Baseline
文章目录 一、赛事概述1.1 OpenBookQA Dataset1.2 比赛背景1.3 评估方法和代码要求1.4 比赛数据集1.5 优秀notebook 二、BERT Baseline2.1 数据预处理2.2 定义data_collator2.3 加载模型,配置trainer并训练2.4 预测结果并提交2.5 相关优化 前言:国庆期间…...
数据分析三剑客之一:Numpy详解及实战
1 NumPy介绍 NumPy 软件包是Python生态系统中数据分析、机器学习和科学计算的主力军。它极大地简化了向量和矩阵的操作处理。Python的一些主要软件包(如 scikit-learn、SciPy、pandas 和 tensorflow)都以 NumPy 作为其架构的基础部分。除了能对数值数据…...
【C语言】函数的定义、传参与调用(二)
💗个人主页💗 ⭐个人专栏——C语言初步学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 导读: 1. 函数的嵌套调用 1.1 什么是嵌套调用 1.2 基础实现 1.3 调用流程解析 2. 函数的链式访问 2.1 …...
Sentinel安装
Sentinel 微服务保护的技术有很多,但在目前国内使用较多的还是Sentinel,所以接下来我们学习Sentinel的使用。 1.介绍和安装 Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。官方网站: 首页 | Se…...
【JVM】并发可达性分析-三色标记算法
欢迎访问👋zjyun.cc 可达性分析 为了验证堆中的对象是否为可回收对象(Garbage)标记上的对象,即是存活的对象,不会被垃圾回收器回收,没有标记的对象会被垃圾回收器回收,在标记的过程中需要stop…...
黑豹程序员-架构师学习路线图-百科:Git/Gitee(版本控制)
文章目录 1、什么是版本控制2、特点3、发展历史4、SVN和Git比较5、Git6、GitHub7、Gitee(国产)8、Git的基础命令 1、什么是版本控制 版本控制系统( Version Control )版本控制是一种管理和跟踪软件开发过程中的代码变化的系统。它…...
《Jetpack Compose从入门到实战》第一章 全新的 Android UI 框架
书籍源码 Compose官方文档 《Jetpack Compose从入门到实战》第一章 全新的 Android UI 框架 《Jetpack Compose从入门到实战》 第二章 了解常用UI组件 《Jetpack Compose从入门到实战》第三章 定制 UI 视图 《Jetpack Compose从入门到实战》第八章 Compose页面 导航 《Jet…...
基于Spring Boot的中小型医院网站的设计与实现
目录 前言 一、技术栈 二、系统功能介绍 前台首页界面 用户登录界面 用户注册界面 门诊信息详情界面 预约挂号界面 药品详情界面 体检报告界面 管理员登录界面 用户管理界面 医师管理界面 科室类型管理界面 门诊信息管理界面 药库信息管理界面 预约挂号管理界面…...
uniapp iOS离线打包——如何创建App并提交版本审核?
uniapp 如何创建App,并提交版本审核? 文章目录 uniapp 如何创建App,并提交版本审核?登录 appstoreconnect创建AppiOS 预览和截屏应用功能描述技术支持App 审核信息 App 信息内容版权年龄分级 价格与销售范围App 隐私提交审核 登录…...
论文笔记:Contrastive Trajectory Similarity Learning withDual-Feature Attention
ICDE 2023 1 intro 1.1 背景 轨迹相似性,可以分为两类 启发式度量 根据手工制定的规则,找到两条轨迹之间基于点的匹配学习式度量 通过计算轨迹嵌入之间的距离来预测相似性值上述两种度量的挑战: 无效性: 具有不同采样率或含有噪…...
整数和字符串比较的坑
结果竟然是相同,惊呆了吧? $num1 2023快放假了; $num2 2023;if ($num1 $num2) {echo 相同; } else {echo 不相同; }num2改成字符串类型,结果:不相同,又不懵了吧? $num1 2023快放假了; $num2 2023;if…...
LeetCode 面试题 08.04. 幂集
文章目录 一、题目二、C# 题解 一、题目 幂集。编写一种方法,返回某集合的所有子集。集合中不包含重复的元素。 说明: 解集不能包含重复的子集。 示例: 输入: nums [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1…...
【m_listCtrl !=NULL有多个运算符与操作数匹配】2023/9/21 上午11:03:44
2023/9/21 上午11:03:44 m_listCtrl !=NULL有多个运算符与操作数匹配 2023/9/21 上午11:04:00 如果您在编译或运行代码时遇到"M_listCtrl != NULL有多个运算符与操作数匹配"的错误提示,这通常是由于以下几个原因之一: 错误使用运算符:在条件判断语句中,应该使…...
Logrus 集成 color 库实现自定义日志颜色输出字符原理
问题背景 下列代码实现了使用 Logurs 日志框架输出日志时根据级别不同,使用对应的自定义颜色进行输出。那么思考下代码的逻辑是怎么实现的呢? 效果如下: 代码如下: import ("fmt""github.com/sirupsen/logrus&q…...
【Java-LangChain:使用 ChatGPT API 搭建系统-2】语言模型,提问范式与 Token
第二章 语言模型,提问范式与 Token 在本章中,我们将和您分享大型语言模型(LLM)的工作原理、训练方式以及分词器(tokenizer)等细节对 LLM 输出的影响。我们还将介绍 LLM 的提问范式(chat format…...
想要精通算法和SQL的成长之路 - 最长连续序列
想要精通算法和SQL的成长之路 - 最长连续序列 前言一. 最长连续序列1.1 并查集数据结构创建1.2 find 查找1.3 union 合并操作1.4 最终代码 前言 想要精通算法和SQL的成长之路 - 系列导航 并查集的运用 一. 最长连续序列 原题链接 这个题目,如何使用并查集是一个小难…...
UG NX二次开发(C#)- 制图(Draft)-工程图框选制图曲线并输出制图曲线的信息
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、在UG NX中打开一个装配体模型3、进入工程制图模块,创建工程制图4、在VS中创建一个工程项目5、在Main()中添加选择的代码(UFun)6、在Main()中添加选择的代码(NXOpen)7、框选解决方案…...
1.7.C++项目:仿muduo库实现并发服务器之Poller模块的设计
项目完整在: 文章目录 一、Poller模块:描述符IO事件监控模块二、提供的功能三、实现思想(一)功能(二)意义(三)功能设计 四、封装思想五、代码(一)框架&#…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...
Python异步编程:深入理解协程的原理与实践指南
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 持续学习,不断…...
NineData数据库DevOps功能全面支持百度智能云向量数据库 VectorDB,助力企业 AI 应用高效落地
NineData 的数据库 DevOps 解决方案已完成对百度智能云向量数据库 VectorDB 的全链路适配,成为国内首批提供 VectorDB 原生操作能力的服务商。此次合作聚焦 AI 开发核心场景,通过标准化 SQL 工作台与细粒度权限管控两大能力,助力企业安全高效…...
