当前位置: 首页 > news >正文

(枚举 + 树上倍增)Codeforces Round 900 (Div. 3) G

Problem - G - Codeforces

题意:

思路:

首先,目标值和结点权值是直接联系的,最值不可能直接贪心,一定是考虑去枚举一些东西,依靠这种枚举可以遍历所有的有效情况,思考的方向一定是枚举

如果去直接在链上枚举的话, 复杂度是O(nq),肯定不行

注意到一条路径上的前缀或值不会超过 logV个,因此考虑枚举前缀或值

 

关于每次跳使前缀或值变化的最深的点,我是这样理解的

如果考虑在链上枚举,如果前缀或值不变,那么这样的枚举是无效的,我们直接考虑跳着枚举,只枚举所有有效情况

关于怎么跳其实可以参考树上倍增往上跳的跳法,记录一个数组指向下一个结点,在dfs上维护即可,有点像在树链上DP

Code:

#include <bits/stdc++.h>#define int long longconstexpr int N = 2e5 + 10;std::vector<int> adj[N];int n;
int a[N];
int dep[N];
int f[N][33], s[N][33], lst[N][33];void dfs(int u, int fa) {dep[u] = dep[fa] + 1;f[u][0] = fa;for (int j = 1; j <= 30; j ++) f[u][j] = f[f[u][j - 1]][j - 1];int val = a[u];for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {lst[u][j] = lst[fa][j];s[u][j] = s[fa][j];}else {lst[u][j] = u;s[u][j] = s[fa][j] + 1;}}for (auto v : adj[u]) {if (v == fa) continue;dfs(v, u);}
}
int lca(int u, int v) {if (dep[u] < dep[v]) std::swap(u, v);for (int j = 30; j >= 0; j --) {if (dep[f[u][j]] >= dep[v]) {u = f[u][j];}}if (u == v) return u;for (int j = 30; j >= 0; j --) {if (f[u][j] != f[v][j]) {u = f[u][j];v = f[v][j];}}return f[u][0];
}
int calc(int x, int y, int lca) {int res = 0;for (int j = 0; j <= 30; j ++) {if (s[x][j] + s[y][j] - s[lca][j] - s[f[lca][0]][j]) res ++;}return res;
}
void solve() {std::cin >> n;for (int i = 1; i <= n; i ++) {adj[i].clear();dep[i] = 0;for (int j = 30; j >= 0; j --) {f[i][j] = s[i][j] = lst[i][j] = 0;}}for (int i = 1; i <= n; i ++) std::cin >> a[i];for (int i = 1; i <= n - 1; i ++) {int u, v;std::cin >> u >> v;adj[u].push_back(v);adj[v].push_back(u);}dfs(1, 0);int q;int ans = 0;std::cin >> q;while(q --) {int x, y;std::cin >> x >> y;int cur = x, val = a[x];ans = 0;while(1) {int nxt = 0, mx = 0;ans = std::max(ans, calc(x, cur, lca(x, cur)) + calc(cur, y, lca(cur, y)));for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {if (dep[lst[cur][j]] >= dep[lca(x, y)]) {if (dep[lst[cur][j]] > mx) {mx = dep[lst[cur][j]];nxt = lst[cur][j];}}}}if (!mx) break;val |= a[nxt];cur = nxt;}cur = y, val = a[y];while(1) {int nxt = 0, mx = 0;ans = std::max(ans, calc(x, cur, lca(x, cur)) + calc(cur, y, lca(cur, y)));for (int j = 30; j >= 0; j --) {if (!((val >> j) & 1)) {if (dep[lst[cur][j]] >= dep[lca(x, y)]) {if (dep[lst[cur][j]] > mx) {mx = dep[lst[cur][j]];nxt = lst[cur][j];}}}}if (!mx) break;val |= a[nxt];cur = nxt;}std::cout << ans << " ";}std::cout << "\n";
}
signed main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int t = 1;std::cin >> t;while(t --) {solve();}return 0;
}

相关文章:

(枚举 + 树上倍增)Codeforces Round 900 (Div. 3) G

Problem - G - Codeforces 题意&#xff1a; 思路&#xff1a; 首先&#xff0c;目标值和结点权值是直接联系的&#xff0c;最值不可能直接贪心&#xff0c;一定是考虑去枚举一些东西&#xff0c;依靠这种枚举可以遍历所有的有效情况&#xff0c;思考的方向一定是枚举 如果去…...

websocket逆向【python实现websocket拦截】

python实现websocket拦截 前言一、拦截的优缺点优点:缺点:二、实现方法1.环境配置2.代码三、总结前言 开发者工具F12,筛选ws后,websocket的消息是这样显示的,如何获取这里面的消息呢? 以下是本篇文章正文内容 一、拦截的优缺点 主要讲解一下websocket拦截的实现,现在…...

软件测试自动化的成本效益分析

随着软件测试技术的发展&#xff0c;人们已经从最初的手工测试转变为手工和自动化技术相结合的测试方法。目前&#xff0c;人们更多的是关心自动化测试框架、自动化测试工具以及脚本研究等技术方面&#xff0c;而在软件自动化测试方案的效益分析方面涉及较少。 软件测试的目的是…...

【Java】状态修饰符 final static

目录 final 修饰我们的成员方法、成员变量、类 示例代码&#xff1a; final 修饰的局部变量 示例代码&#xff1a; static 示例代码&#xff1a; static 访问特点&#xff1a; 示例代码&#xff1a; static关键字的用途 示例代码&#xff1a; static 修饰常量 示例…...

笔试编程ACM模式JS(V8)、JS(Node)框架、输入输出初始化处理、常用方法、技巧

目录 考试注意事项 先审完题意&#xff0c;再动手 在本地编辑器&#xff08;有提示&#xff09; 简单题515min 通过率0%&#xff0c;有额外log 常见输入处理 str-> num arr&#xff1a;line.split( ).map(val>Number(val)) 初始化数组 new Array(length).fill(v…...

learn掩码张量

目录 1、什么是掩码张量 2、掩码张量的作用 3、代码演示 &#xff08;1&#xff09;、定义一个上三角矩阵&#xff0c;k0或者 k默认为 0 &#xff08;2&#xff09;、k1 &#xff08;3&#xff09;、k-1 4、掩码张量代码实现 &#xff08;1&#xff09;、输出效果 &…...

激活函数介绍

介绍 神经网络当中的激活函数用来提升网络的非线性&#xff0c;以增强网络的表征能力。它有这样几个特点&#xff1a;有界&#xff0c;必须为非常数&#xff0c;单调递增且连续可求导。我们常用的有sigmoid或者tanh&#xff0c;但我们都知道这两个都存在一定的缺点&#xff0c…...

docker方式启动一个java项目-Nginx本地有代码,并配置反向代理

文章目录 案例导入说明1.安装MySQL1.1.准备目录1.2.运行命令1.3.修改配置1.4.重启 2.导入SQL3.导入Demo工程3.1.分页查询商品&#xff08;仔细看代码&#xff0c;很多新的MP编程技巧&#xff09;3.2.新增商品3.3.修改商品3.4.修改库存3.5.删除商品3.6.根据id查询商品3.7.根据id…...

前端和后端是Web开发选哪个好?

前端和后端是Web开发中的两个不同的领域&#xff0c;哪一种更适合学习&#xff1f;前景更广呢&#xff1f; 一、引言 Web前端开发就像装饰房间的小瓦匠&#xff0c;勤勤恳恳&#xff0c;仔仔细细&#xff0c;粉饰墙壁&#xff0c;妆点家具。会 HTML,CSS&#xff0c;懂点 JS。…...

HTTP协议,请求响应

、概述 二、HTTP请求协议 三、HTTP响应协议 四、请求数据 1.简单实体参数 RequestMapping("/simpleParam")public String simpleParam(RequestParam(name "name" ,required false ) String username, Integer age){System.out.println (username "…...

idea配置文件属性提示消息解决方案

在项目文件路径下找到你没有属性提示消息的文件 选中&#xff0c;ok即可 如果遇到ok无法确认的情况&#xff1a; 在下图所示位置填写配置文件名称即可...

EdgeView 4 for Mac:重新定义您的图像查看体验

您是否厌倦了那些功能繁杂、操作复杂的图像查看器&#xff1f;您是否渴望一款简单、快速且高效的工具&#xff0c;以便更轻松地浏览和管理您的图像库&#xff1f;如果答案是肯定的&#xff0c;那么EdgeView 4 for Mac将是您的理想之选&#xff01; EdgeView 4是一款专为Mac用户…...

流程自动化(RPA)的好处有哪些?

流程自动化&#xff08;RPA&#xff09;是一种通过软件机器人实现业务流程自动化的技术。它可以模拟人类在计算机上执行的操作&#xff0c;从而自动化重复性、繁琐的任务&#xff0c;提高工作效率和准确性。流程自动化&#xff08;RPA&#xff09;的好处很多&#xff0c;下面我…...

医学影像系统【简称PACS】源码

PACS(Picture Archiving and Comuniations Systems)即PACS&#xff0c;图像存储与传输系统&#xff0c;是应用于医院中管理医疗设备如CT&#xff0c;MR等产生的医学图像的信息系统。目标是支持在医院内部所有关于图像的活动&#xff0c;集成了医疗设备&#xff0c;图像存储和分…...

大家都在用哪些敏捷开发项目管理软件?

敏捷开发是一种以人为核心、迭代、循序渐进的开发方法。 敏捷开发的特点是高度灵活性和适应性、迭代式开发。 敏捷开发方法强调快速响应变化&#xff0c;因此它具有高度的灵活性和适应性。开发团队可以根据客户需求和市场变化快速调整开发计划和产品功能&#xff0c;以确保产品…...

python机器学习基础教程01-环境搭建

书籍源代码 github上源代码 https://github.com/amueller/introduction_to_ml_with_python 安装anaconda虚拟环境 创建虚拟环境 conda create -p E:\Python\envs\mlstupy35 python3.5 # 激活环境 conda activate E:\Python\envs\mlstupy35 # 创建学习目录 cd G:\Python\ml…...

TinyWebServer学习笔记-Config

为了弄清楚具体的业务逻辑&#xff0c;我们直接从主函数开始看源代码&#xff1a; #include "config.h"int main(int argc, char *argv[]) {//需要修改的数据库信息,登录名,密码,库名string user "root";string passwd "root";string databas…...

数据结构与算法--算法

这里写目录标题 线性表顺序表链表插入删除算法 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 线性表 顺序表 链表 插入删除算法 步骤 1.通过循环到达指定位置的前一个位置 2.新建…...

JVM:如何通俗的理解并发的可达性分析

并发的可达性分析 前面在介绍对象是否已死那一节有说到可达性分析算法&#xff0c;它理论上是要求全过程都基于一个能保障一致性的快照&#xff08;类比 MySQL 的MVCC&#xff09;中才能够进行分析&#xff0c;也就意味着必须全程冻结用户线程的运行&#xff08;STW&#xff0…...

传统机器学习聚类算法——总集篇

工作需要&#xff0c;涉及到一些聚类算法相关的知识。工作中需要综合考虑数据量、算法效果、性能之间的平衡&#xff0c;所以开启新的篇章——机器学习聚类算法篇。 传统机器学习中聚类算法主要分为以下几类&#xff1a; 1. 层次聚类算法 层次聚类算法是一种无监督学习算法&am…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...

起重机起升机构的安全装置有哪些?

起重机起升机构的安全装置是保障吊装作业安全的关键部件&#xff0c;主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理&#xff1a; 一、超载保护装置&#xff08;核心安全装置&#xff09; 1. 起重量限制器 功能&#xff1a;实时监测起升载荷&a…...

Docker、Wsl 打包迁移环境

电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本&#xff1a; 2.2.4.0 内核版本&#xff1a; 5.15.153.1-2 WSLg 版本&#xff1a; 1.0.61 MSRDC 版本&#xff1a; 1.2.5326 Direct3D 版本&#xff1a; 1.611.1-81528511 DXCore 版本&#xff1a; 10.0.2609…...

JS设计模式(5): 发布订阅模式

解锁JavaScript发布订阅模式&#xff1a;让代码沟通更优雅 在JavaScript的世界里&#xff0c;我们常常会遇到这样的场景&#xff1a;多个模块之间需要相互通信&#xff0c;但是又不想让它们产生过于紧密的耦合。这时候&#xff0c;发布订阅模式就像一位优雅的信使&#xff0c;…...