JVM:如何通俗的理解并发的可达性分析
并发的可达性分析
前面在介绍对象是否已死那一节有说到可达性分析算法,它理论上是要求全过程都基于一个能保障一致性的快照(类比 MySQL 的MVCC)中才能够进行分析,也就意味着必须全程冻结用户线程的运行(STW)。
在根节点枚举这个步骤中,说到它是 STW 的。但 GC Roots 在整个Java堆中全部的对象毕竟还算是极少数,且在各种优化技巧(如OopMap)的加持下,它带来的停顿已经是非常短暂且相对固定(不随堆容量而增长)的了。可从GC Roots再继续往下遍历对象图,这一步骤的停顿时间就必定会与Java堆容量直接成正比例关系了(致命的):也就是堆越大、存储的对象越多、对象图结构越复杂,那么要标记更多对象而产生的停顿时间就更长。
然而衡量一个垃圾收集器的好坏,停顿时间是一个非常重要的指标。如果你是追求极致性能的垃圾收集器的设计者,你肯定不甘于在可达性分析过程中停顿用户线程。所以,他们期望在这个过程中可以并发。那他们怎么解决这个问题呢?
想解决或者降低用户线程的停顿,就要先搞清楚为什么必须在一个能保障一致性的快照上才能进行对象图的遍历?
其实你也可以先想象一下,在并发可达性分析过程中不采取任何技术手段,会出现什么问题。比如在某一个GC roots 的对象图 已经标记完成了,此时用户线程再创建一个对象引用到前面已经编辑完成的对象图中,那么由于新插入的对象引用没有对标记到,那么再GC 时大概率就会被清除,这样的结果是致命的(类比下日常工作中的情况)。
可能我这样说有点通俗啊,我们也可以一起看下官方的叙述说明,他们是怎么解释这个问题的:
为了能解释清楚这个问题,他们引入三色标记作为工具来辅助推导,把遍历对象图过程中遇到的对象,按照“是否访问过”这个条件标记成以下三种颜色:
- 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
- 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
- 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。(去到图二解释下)

总结:收集器在对象图上标记颜色,同时用户线程在修改引用关系——即修改对象图的结构,这样可能出现两种后果
- 一种是把原本消亡的对象错误标记为存活,这不是好事,但其实是可以容忍的,只不过产生了一点逃过本次收集的浮动垃圾而已,下次收集清理掉就好,问题不大。
- 另一种是把原本存活的对象错误标记为已消亡,这就是非常致命的后果了,程序肯定会因此发生错误。
如何解决这个问题?
Wilson于1994年在理论上证明了,当且仅当以下两个条件同时满足时,会产生“对象消失”的问题,即原本应该是黑色的对象被误标为白色:
- 并发中插入了一条或多条从黑色对象到白色对象的新引用;
- 并发中删除了全部从灰色对象到该白色对象的直接或间接引用。
因此,我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意一个即可(类似于避免死锁的思路)。由此分别产生了两种解决方案:增量更新(Incremental Update)和原始快照(Snapshot At The Beginning, SATB)。
增量更新(破坏的是第一个条件):当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。通俗的讲就是,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。
**原始快照(破坏的是第二个条件):**当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。通俗的讲就是,论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。
以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。在HotSpot虚拟机中,增量更新和原始快照这两种解决方案都有实际应用,譬如,CMS是基于增量更新来做并发标记的,G1、Shenandoah则是用原始快照来实现。
相关文章:
JVM:如何通俗的理解并发的可达性分析
并发的可达性分析 前面在介绍对象是否已死那一节有说到可达性分析算法,它理论上是要求全过程都基于一个能保障一致性的快照(类比 MySQL 的MVCC)中才能够进行分析,也就意味着必须全程冻结用户线程的运行(STW࿰…...
传统机器学习聚类算法——总集篇
工作需要,涉及到一些聚类算法相关的知识。工作中需要综合考虑数据量、算法效果、性能之间的平衡,所以开启新的篇章——机器学习聚类算法篇。 传统机器学习中聚类算法主要分为以下几类: 1. 层次聚类算法 层次聚类算法是一种无监督学习算法&am…...
Ajax
一、什么是Ajax <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-wid…...
SQL_ERROR_INFO: “Duplicate entry ‘9003‘ for key ‘examination_info.exam_id‘“
今天刷题的时候,往数据库中插入一条语句,但是这个语句已经存在于数据库中了,所以不能用insert into 语句来插入,应该使用replace into 来插入。 REPLACE INTO examination_info(exam_id,tag,difficulty,duration,release_time) V…...
解决每次重启ganache虚拟环境,十个账号秘钥都会改变问题
很多时候 我们启动一个 ganache 环境 然后 通过私钥 在 MetaMask 中 导入用户 但是 当我们因为 电脑要关机呀 或者 ETH 消耗没了呀 那我们就不得不重启一个ganache虚拟环境 然后 你在切一下网络 让它刷新一下 你就会发现 上一次导入的用户就没有了 这是因为 你每次 ganache…...
sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第一周测验
课程2_第1周_测验题 目录:目录 第一题 1.如果你有10,000,000个例子,你会如何划分训练/验证/测试集? A. 【 】33%训练,33%验证,33%测试 B. 【 】60%训练,20%验证,20%测试 C. 【 】98…...
(粗糙的笔记)动态规划
动态规划算法框架: 问题结构分析递推关系建立自底向上计算最优方案追踪 背包问题 输入: n n n个商品组成的集合 O O O,每个商品有两个属性 v i v_i vi和 p i p_i pi,分别表示体积和价格背包容量 C C C 输出: …...
Kaggle - LLM Science Exam上:赛事概述、数据收集、BERT Baseline
文章目录 一、赛事概述1.1 OpenBookQA Dataset1.2 比赛背景1.3 评估方法和代码要求1.4 比赛数据集1.5 优秀notebook 二、BERT Baseline2.1 数据预处理2.2 定义data_collator2.3 加载模型,配置trainer并训练2.4 预测结果并提交2.5 相关优化 前言:国庆期间…...
数据分析三剑客之一:Numpy详解及实战
1 NumPy介绍 NumPy 软件包是Python生态系统中数据分析、机器学习和科学计算的主力军。它极大地简化了向量和矩阵的操作处理。Python的一些主要软件包(如 scikit-learn、SciPy、pandas 和 tensorflow)都以 NumPy 作为其架构的基础部分。除了能对数值数据…...
【C语言】函数的定义、传参与调用(二)
💗个人主页💗 ⭐个人专栏——C语言初步学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 导读: 1. 函数的嵌套调用 1.1 什么是嵌套调用 1.2 基础实现 1.3 调用流程解析 2. 函数的链式访问 2.1 …...
Sentinel安装
Sentinel 微服务保护的技术有很多,但在目前国内使用较多的还是Sentinel,所以接下来我们学习Sentinel的使用。 1.介绍和安装 Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。官方网站: 首页 | Se…...
【JVM】并发可达性分析-三色标记算法
欢迎访问👋zjyun.cc 可达性分析 为了验证堆中的对象是否为可回收对象(Garbage)标记上的对象,即是存活的对象,不会被垃圾回收器回收,没有标记的对象会被垃圾回收器回收,在标记的过程中需要stop…...
黑豹程序员-架构师学习路线图-百科:Git/Gitee(版本控制)
文章目录 1、什么是版本控制2、特点3、发展历史4、SVN和Git比较5、Git6、GitHub7、Gitee(国产)8、Git的基础命令 1、什么是版本控制 版本控制系统( Version Control )版本控制是一种管理和跟踪软件开发过程中的代码变化的系统。它…...
《Jetpack Compose从入门到实战》第一章 全新的 Android UI 框架
书籍源码 Compose官方文档 《Jetpack Compose从入门到实战》第一章 全新的 Android UI 框架 《Jetpack Compose从入门到实战》 第二章 了解常用UI组件 《Jetpack Compose从入门到实战》第三章 定制 UI 视图 《Jetpack Compose从入门到实战》第八章 Compose页面 导航 《Jet…...
基于Spring Boot的中小型医院网站的设计与实现
目录 前言 一、技术栈 二、系统功能介绍 前台首页界面 用户登录界面 用户注册界面 门诊信息详情界面 预约挂号界面 药品详情界面 体检报告界面 管理员登录界面 用户管理界面 医师管理界面 科室类型管理界面 门诊信息管理界面 药库信息管理界面 预约挂号管理界面…...
uniapp iOS离线打包——如何创建App并提交版本审核?
uniapp 如何创建App,并提交版本审核? 文章目录 uniapp 如何创建App,并提交版本审核?登录 appstoreconnect创建AppiOS 预览和截屏应用功能描述技术支持App 审核信息 App 信息内容版权年龄分级 价格与销售范围App 隐私提交审核 登录…...
论文笔记:Contrastive Trajectory Similarity Learning withDual-Feature Attention
ICDE 2023 1 intro 1.1 背景 轨迹相似性,可以分为两类 启发式度量 根据手工制定的规则,找到两条轨迹之间基于点的匹配学习式度量 通过计算轨迹嵌入之间的距离来预测相似性值上述两种度量的挑战: 无效性: 具有不同采样率或含有噪…...
整数和字符串比较的坑
结果竟然是相同,惊呆了吧? $num1 2023快放假了; $num2 2023;if ($num1 $num2) {echo 相同; } else {echo 不相同; }num2改成字符串类型,结果:不相同,又不懵了吧? $num1 2023快放假了; $num2 2023;if…...
LeetCode 面试题 08.04. 幂集
文章目录 一、题目二、C# 题解 一、题目 幂集。编写一种方法,返回某集合的所有子集。集合中不包含重复的元素。 说明: 解集不能包含重复的子集。 示例: 输入: nums [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1…...
【m_listCtrl !=NULL有多个运算符与操作数匹配】2023/9/21 上午11:03:44
2023/9/21 上午11:03:44 m_listCtrl !=NULL有多个运算符与操作数匹配 2023/9/21 上午11:04:00 如果您在编译或运行代码时遇到"M_listCtrl != NULL有多个运算符与操作数匹配"的错误提示,这通常是由于以下几个原因之一: 错误使用运算符:在条件判断语句中,应该使…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
