全排列[中等]
优质博文:IT-BLOG-CN
一、题目
给定一个不含重复数字的数组nums,返回其所有可能的全排列。你可以按任意顺序返回答案。
示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]
提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums 中的所有整数 互不相同
二、代码
全排列的长度就是数据长度的阶层,排列和组合的区别:排列中[1,2]和[2,1]是不同的,但在组合中[1,2]和[2,1]是相同的。
我们已简单的[1,2,3]为一组,看下排列的搜索树:

解题思路:
【1】使用数组path记录路径上的数(已选数字)
【2】集合s记录剩余未选的数
回溯三问:
【1】当前操作?从s中枚举path[i]要填入的数字x;
【2】子问题?构造排列 >= i 的部分,剩余未选数字集合为s;
【3】下一个子问题?构造排列 >= i + 1 部分,剩余未选数字结合为s-{x};
class Solution {// 入参private int[] nums;// 返回值private final List<List<Integer>> resList = new ArrayList<>();// 返回值中包的Listprivate List<Integer> path;// 过滤 j 使用private boolean[] onPath;public List<List<Integer>> permute(int[] nums) {this.nums = nums;path = Arrays.asList(new Integer[nums.length]);onPath = new boolean[nums.length];dfs(0);return resList;}// 回溯方法private void dfs(int i) {// 回溯方法的退出条件if (i == nums.length) {// 这里需要copy path, 不能直接赋值,因为path一直变化resList.add(new ArrayList(path));System.out.println("resList : " + resList.toString());return;}// 每个i进来,组装一次结果for (int j = 0; j < nums.length; j++) {// 过滤j,原因在循环中有说明if (!onPath[j]) {// 当 i 递增时,j也在递增path.set(i, nums[j]);System.out.println(path.toString());// 回溯 (此时,i= 1调用的时候,j还是0,所以需要过滤掉j=0,因此添加 onPath 的Boolean数组)onPath[j] = true;dfs(i+1);// 当i遍历完成之后,需要恢复现场onPath[j] = false;}}}
}
看下输出的流程:
[1, null, null]
[1, 2, null]
[1, 2, 3]
resList : [[1, 2, 3]]
[1, 3, 3]
[1, 3, 2]
resList : [[1, 2, 3], [1, 3, 2]]
[2, 3, 2]
[2, 1, 2]
[2, 1, 3]
resList : [[1, 2, 3], [1, 3, 2], [2, 1, 3]]
[2, 3, 3]
[2, 3, 1]
resList : [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]]
[3, 3, 1]
[3, 1, 1]
[3, 1, 2]
resList : [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]]
[3, 2, 2]
[3, 2, 1]
resList : [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
附视频讲解
时间复杂度: O(n⋅n!),其中n为nums的长度。搜索树中的节点个数低于3⋅n!。实际上,精确值为⌊e⋅n!⌋,其中e=2.718⋯为自然常数。每个非叶节点要花费O(n)的时间遍历onPath数组,每个叶结点也要花费O(n)的时间复制path数组,因此时间复杂度为O(n⋅n!)。
空间复杂度: O(n)返回值的空间不计入。
相关文章:
全排列[中等]
优质博文:IT-BLOG-CN 一、题目 给定一个不含重复数字的数组nums,返回其所有可能的全排列。你可以按任意顺序返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 示例…...
mybatise-plus的id过长问题
一、问题情景 笔者在做mp插入数据库(id已设置为自增)操作时,发现新增数据的id过长,结果导致前端JS拿到的数据出现了精度丢失问题,原因是后端id的类型是Long。在网上查了一下,只要在该属性上加上如下注解就可以 TableId(value &q…...
图示矩阵分解
特征值与特征向量 设 A A A 是 n 阶矩阵,如果存在数 λ \lambda λ 和 n 维非零列向量 x x x,满足关系式: A x λ x ( 1 ) Ax \lambda x\quad\quad(1) Axλx(1) 则数 λ \lambda λ 称为矩阵 A A A 的特征值,非零向量 x…...
六、互联网技术——数据存储
文章目录 一、存储系统层次结构二、按照重要性分类三、磁盘阵列RAID三、RAID基础四、磁盘阵列分级五、数据备份与恢复六、容灾与灾难恢复 一、存储系统层次结构 常见的三层存储体系结构如下图所示,分为高速缓冲存储器、主存储器和外存储器。 二、按照重要性分类 …...
六、vpp 流表+负载均衡
草稿!!! vpp node其实就是三个部分 1、plugin init 2、set command 3、function 实现功能,比如这里的流表 今天我们再用VPP实现一个流表的功能 一、流表 1.1流表----plugin init VLIB_REGISTER_NODE 注册流表节点 // 注册流…...
word已排序好的参考文献,插入新的参考文献,序号更新
原排序好的文献序号。 现在在3号后面插入一个新文献。4,5号应该成为5,6 这时在3号后面,回车,就会自动的增长。如下图: 但是如果手滑,把[4]删除了如何排序?? 如下图: …...
二叉树的顺序存储——堆——初识堆排序
前面我们学过可以把完全二叉树存入到顺序表中,然后利用完全二叉树的情缘关系,就可以通过数组下标来联系。 但是并不是把二叉树存入到数组中就是堆了,要看原原来的二叉树是否满足:所有的父都小于等于子,或者所有的父都…...
CYEZ 模拟赛 9
A a ⊥ b ⇒ a − b ⊥ a b (1) a \perp b \Rightarrow a-b \perp ab \tag {1} a⊥b⇒a−b⊥ab(1) 证明: gcd ( a , b ) gcd ( b , a − b ) \gcd(a,b) \gcd(b, a-b) gcd(a,b)gcd(b,a−b),故 a − b ⊥ b a - b \perp b a−b⊥b,同…...
typescript: Builder Pattern
/*** file: CarBuilderts.ts* TypeScript 实体类 Model* Builder Pattern* 生成器是一种创建型设计模式, 使你能够分步骤创建复杂对象。* https://stackoverflow.com/questions/12827266/get-and-set-in-typescript* https://github.com/Microsoft/TypeScript/wiki/…...
WPS/word 表格跨行如何续表、和表的名称
1:具体操作: 将光标定位在跨页部分的第一行任意位置,按下快捷键ctrlshiftenter,就可以在跨页的表格上方插入空行(在空行可以写,表1-3 xxxx(续)) 在空行中输入…...
Python的NumPy库(一)基础用法
NumPy库并不是Python的标准库,但其在机器学习、大数据等很多领域有非常广泛的应用,NumPy本身就有比较多的内容,全部的学习可能涉及许多的内容,但我们在这里仅学习常见的使用,这些内容对于我们日常使用NumPy是足够的。 …...
uniapp app 导出excel 表格
直接复制运行 <template><view><button click"tableToExcel">导出一个表来看</button><view>{{ successTip }}</view></view> </template><script>export default {data() {return {successTip: }},metho…...
【RabbitMQ】常用消息模型详解
文章目录 AMQP协议的回顾RabbitMQ支持的消息模型第一种模型(直连)开发生产者开发消费者生产者、消费者开发优化API参数细节 第二种模型(work quene)开发生产者开发消费者消息自动确认机制 第三种模型(fanout)开发生产者开发消费者 第四种模型(Routing)开发生产者开发消费者 第五…...
图像拼接后丢失数据,转tiff报错rasterfile failed: an unknown
图像拼接后丢失数据 不仅是数据丢失了,还有个未知原因报错 部分数据存在值不存在的情况 原因 处理遥感数据很容易,磁盘爆满了 解决方案 清理一些无用数据,准备买个2T的外接硬盘用着了。 然后重新做处理...
Nginx之日志模块解读
目录 基本介绍 配置指令 access_log(访问日志) error_log( 错误日志) 基本介绍 Nginx日志主要分为两种:access_log(访问日志)和error_log(错误日志)。Nginx日志主要记录以下信息: 记录Nginx服务启动…...
latex方程组编写,一种可以保证方程编号自适应的方法
问题描述: 在利用latex编写方程组时,可以有很多种方法,但不总是编辑好的公式能够显示出编号,故提出一种有效的方程组编写方法 方法: \begin{equation}X_{ t1}\left \{ \begin{matrix}\frac{x_{i}}{a} \quad\quad 0&l…...
深度学习基础 2D卷积(1)
什么是2D卷积 2D参数量怎么计算 以pytorch为例子,2D卷积在设置的时候具有以下参数,具有输入通道的多少(这个决定了卷积核的通道数量),滤波器数量,这个是有多少个滤波器,越多提取的特征就越有用…...
OpenCV DNN C++ 使用 YOLO 模型推理
OpenCV DNN C 使用 YOLO 模型推理 引言 YOLO(You Only Look Once)是一种流行的目标检测算法,因其速度快和准确度高而被广泛应用。OpenCV 的 DNN(Deep Neural Networks)模块为我们提供了一个简单易用的 API࿰…...
第八章 Linux文件系统权限
目录 8.1 文件的一般权限 1.修改文件或目录的权限---chmod命令 2.对于文件和目录,r,w,x有不同的作用: 3.修改文件或目录的所属主和组---chown,chgrp 8.2 文件和目录的特殊权限 三种通过字符描述文件权限 8.3 ACL 权限 1.A…...
XXL-JOB源码梳理——一文理清XXL-JOB实现方案
分布式定时任务调度系统 流程分析 一个分布式定时任务,需要具备有以下几点功能: 核心功能:定时调度、任务管理、可观测日志高可用:集群、分片、失败处理高性能:分布式锁扩展功能:可视化运维、多语言、任…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
