当前位置: 首页 > news >正文

逻辑回归评分卡

文章目录

  • 一、基础知识点
    • (1)逻辑回归表达式
    • (2)sigmoid函数的导数
    • 损失函数(Cross-entropy, 交叉熵损失函数)
    • 交叉熵求导
    • 准确率计算
    • 评估指标
  • 二、导入库和数据集
    • 导入库
    • 读取数据
  • 三、分析与训练
  • 四、模型评价
    • ROC曲线
    • KS值
    • 再做特征筛选
    • 生成报告
  • 五、行为评分卡模型表现
  • 总结

一、基础知识点

(1)逻辑回归表达式

在这里插入图片描述
in:

import numpy as np
import matplotlib.pyplot as plt
import tqdm
import osfile = 'testSet.txt'
if os.path.exists(file):data = np.loadtxt(file)
features = data[:, :2]
labels = data[:, -1]print(features.shape, labels.shape)

out:
在这里插入图片描述
in:

print('特征的维度: {0}'.format(features.shape[1]))
print('总共有{0}个类别'.format(len(np.unique(labels))))

out:
特征的维度: 2
总共有2个类别

figure = plt.figure()
plt.scatter([x[0] for x in features], [x[1] for x in features])
plt.show()

在这里插入图片描述

(2)sigmoid函数的导数

在这里插入图片描述

损失函数(Cross-entropy, 交叉熵损失函数)

在这里插入图片描述

def loss(Y_t, Y_p):'''算交叉熵损失函数Y_t: 独热编码之后的真实值向量Y_p: 预测的值向量        '''trans = np.zeros(shape=Y_t.shape)for sample_idx in range(len(trans)):# print(trans[sample_idx], [Y_p[sample_idx], 1.0 - Y_p[sample_idx]])# 避免出现0trans[sample_idx] = [Y_p[0][sample_idx] , 1.0 - Y_p[0][sample_idx] + 1e-5]log_y_p = np.log(trans)return -np.sum(np.multiply(Y_t, log_y_p))Y_t = np.array([[0, 1], [1, 0]])
Y_p = np.array([[0.8, 1]])loss(Y_t=Y_t, Y_p=Y_p)

交叉熵求导

在这里插入图片描述

def delta_cross_entropy(Y_t, Y_p):trans = np.zeros(shape=Y_t.shape)for sample_idx in range(len(trans)):trans[sample_idx] = [Y_p[0][sample_idx] + 1e-8, 1.0 - Y_p[0][sample_idx] + 1e-8]Y_t[Y_t == 0] += 1e-8error = Y_t * (1 / trans)error[:, 0] = -error[:, 0]return np.sum(error, axis=1, keepdims=True)Y_t = np.array([[0, 1], [1, 0]], dtype=np.float)
Y_p = np.array([[0.8, 1]])
delta_cross_entropy(Y_t=Y_t, Y_p=Y_p)

准确率计算

在这里插入图片描述

def accuracy(Y_p, Y_t):Y_p[Y_p >= 0.5] = 1Y_p[Y_p < 0.5] = 0predict = np.sum(Y_p == Y_t)return predict /  len(Y_t)

评估指标

在这里插入图片描述

def recall(Y_p, Y_t):return np.sum(np.argmax(Y_p) == np.argmax(Y_t)) / np.sum(Y_p == 1)

二、导入库和数据集

导入库

import pandas as pd
from sklearn.metrics import roc_auc_score,roc_curve,auc
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
import numpy as np
import random
import math

读取数据

data = pd.read_csv('Acard.txt')
data.head()

在这里插入图片描述
在这里插入图片描述

三、分析与训练

#这是我们全部的变量,info结尾的是自己做的无监督系统输出的个人表现,score结尾的是收费的外部征信数据
feature_lst = ['person_info','finance_info','credit_info','act_info','td_score','jxl_score','mj_score','rh_score']
x = train[feature_lst]
y = train['bad_ind']val_x =  val[feature_lst]
val_y = val['bad_ind']lr_model = LogisticRegression(C=0.1)
lr_model.fit(x,y)

四、模型评价

ROC曲线

描绘的是不同的截断点时,并以FPR和TPR为横纵坐标轴,描述随着截断点的变小,TPR随着FPR的变化。
纵轴:TPR=正例分对的概率 = TP/(TP+FN),其实就是查全率
横轴:FPR=负例分错的概率 = FP/(FP+TN)

作图步骤:

根据学习器的预测结果(注意,是正例的概率值,非0/1变量)对样本进行排序(从大到小)-----这就是截断点依次选取的顺序 按顺序选取截断点,并计算TPR和FPR—也可以只选取n个截断点,分别在1/n,2/n,3/n等位置 连接所有的点(TPR,FPR)即为ROC图

在这里插入代码片

KS值

作图步骤:

根据学习器的预测结果(注意,是正例的概率值,非0/1变量)对样本进行排序(从大到小)-----这就是截断点依次选取的顺序
按顺序选取截断点,并计算TPR和FPR —也可以只选取n个截断点,分别在1/n,2/n,3/n等位置
横轴为样本的占比百分比(最大100%),纵轴分别为TPR和FPR,可以得到KS曲线
TPR和FPR曲线分隔最开的位置就是最好的”截断点“,最大间隔距离就是KS值,通常>0.2即可认为模型有比较好偶的预测准确性。

y_pred = lr_model.predict_proba(x)[:,1]
fpr_lr_train,tpr_lr_train,_ = roc_curve(y,y_pred)
train_ks = abs(fpr_lr_train - tpr_lr_train).max()
print('train_ks : ',train_ks)y_pred = lr_model.predict_proba(val_x)[:,1]
fpr_lr,tpr_lr,_ = roc_curve(val_y,y_pred)
val_ks = abs(fpr_lr - tpr_lr).max()
print('val_ks : ',val_ks)from matplotlib import pyplot as plt
plt.plot(fpr_lr_train,tpr_lr_train,label = 'train LR')
plt.plot(fpr_lr,tpr_lr,label = 'evl LR')
plt.plot([0,1],[0,1],'k--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC Curve')
plt.legend(loc = 'best')
plt.show()

train_ks : 0.4151676259891534
val_ks : 0.3856283523530577
在这里插入图片描述

再做特征筛选

#再做特征筛选
from statsmodels.stats.outliers_influence import variance_inflation_factor
X = np.array(x)
for i in range(X.shape[1]):print(variance_inflation_factor(X,i))

在这里插入图片描述

import lightgbm as lgb
from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(x,y,random_state=0,test_size=0.2)
def  lgb_test(train_x,train_y,test_x,test_y):clf =lgb.LGBMClassifier(boosting_type = 'gbdt',objective = 'binary',metric = 'auc',learning_rate = 0.1,n_estimators = 24,max_depth = 5,num_leaves = 20,max_bin = 45,min_data_in_leaf = 6,bagging_fraction = 0.6,bagging_freq = 0,feature_fraction = 0.8,)clf.fit(train_x,train_y,eval_set = [(train_x,train_y),(test_x,test_y)],eval_metric = 'auc')return clf,clf.best_score_['valid_1']['auc'],
lgb_model , lgb_auc  = lgb_test(train_x,train_y,test_x,test_y)
feature_importance = pd.DataFrame({'name':lgb_model.booster_.feature_name(),'importance':lgb_model.feature_importances_}).sort_values(by=['importance'],ascending=False)
feature_importance

在这里插入图片描述

feature_lst = ['person_info','finance_info','credit_info','act_info']
x = train[feature_lst]
y = train['bad_ind']val_x =  val[feature_lst]
val_y = val['bad_ind']lr_model = LogisticRegression(C=0.1,class_weight='balanced')
lr_model.fit(x,y)
y_pred = lr_model.predict_proba(x)[:,1]
fpr_lr_train,tpr_lr_train,_ = roc_curve(y,y_pred)
train_ks = abs(fpr_lr_train - tpr_lr_train).max()
print('train_ks : ',train_ks)y_pred = lr_model.predict_proba(val_x)[:,1]
fpr_lr,tpr_lr,_ = roc_curve(val_y,y_pred)
val_ks = abs(fpr_lr - tpr_lr).max()
print('val_ks : ',val_ks)
from matplotlib import pyplot as plt
plt.plot(fpr_lr_train,tpr_lr_train,label = 'train LR')
plt.plot(fpr_lr,tpr_lr,label = 'evl LR')
plt.plot([0,1],[0,1],'k--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC Curve')
plt.legend(loc = 'best')
plt.show()

在这里插入图片描述

# 系数
print('变量名单:',feature_lst)
print('系数:',lr_model.coef_)
print('截距:',lr_model.intercept_)

在这里插入图片描述

生成报告

#生成报告
model = lr_model
row_num, col_num = 0, 0
bins = 20
Y_predict = [s[1] for s in model.predict_proba(val_x)]
Y = val_y
nrows = Y.shape[0]
lis = [(Y_predict[i], Y[i]) for i in range(nrows)]
ks_lis = sorted(lis, key=lambda x: x[0], reverse=True)
bin_num = int(nrows/bins+1)
bad = sum([1 for (p, y) in ks_lis if y > 0.5])
good = sum([1 for (p, y) in ks_lis if y <= 0.5])
bad_cnt, good_cnt = 0, 0
KS = []
BAD = []
GOOD = []
BAD_CNT = []
GOOD_CNT = []
BAD_PCTG = []
BADRATE = []
dct_report = {}
for j in range(bins):ds = ks_lis[j*bin_num: min((j+1)*bin_num, nrows)]bad1 = sum([1 for (p, y) in ds if y > 0.5])good1 = sum([1 for (p, y) in ds if y <= 0.5])bad_cnt += bad1good_cnt += good1bad_pctg = round(bad_cnt/sum(val_y),3)badrate = round(bad1/(bad1+good1),3)ks = round(math.fabs((bad_cnt / bad) - (good_cnt / good)),3)KS.append(ks)BAD.append(bad1)GOOD.append(good1)BAD_CNT.append(bad_cnt)GOOD_CNT.append(good_cnt)BAD_PCTG.append(bad_pctg)BADRATE.append(badrate)dct_report['KS'] = KSdct_report['BAD'] = BADdct_report['GOOD'] = GOODdct_report['BAD_CNT'] = BAD_CNTdct_report['GOOD_CNT'] = GOOD_CNTdct_report['BAD_PCTG'] = BAD_PCTGdct_report['BADRATE'] = BADRATE
val_repot = pd.DataFrame(dct_report)
val_repot

在这里插入图片描述

五、行为评分卡模型表现

from pyecharts.charts import *
from pyecharts import options as opts
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
np.set_printoptions(suppress=True)
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
line = (Line().add_xaxis(list(val_repot.index)).add_yaxis("分组坏人占比",list(val_repot.BADRATE),yaxis_index=0,color="red",).set_global_opts(title_opts=opts.TitleOpts(title="行为评分卡模型表现"),).extend_axis(yaxis=opts.AxisOpts(name="累计坏人占比",type_="value",min_=0,max_=0.5,position="right",axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="red")),axislabel_opts=opts.LabelOpts(formatter="{value}"),)).add_xaxis(list(val_repot.index)).add_yaxis("KS",list(val_repot['KS']),yaxis_index=1,color="blue",label_opts=opts.LabelOpts(is_show=False),)
)
line.render_notebook()

在这里插入图片描述

from pyecharts.charts import *
from pyecharts import options as opts
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
np.set_printoptions(suppress=True)
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
line = (Line().add_xaxis(list(val_repot.index)).add_yaxis("分组坏人占比",list(val_repot.BADRATE),yaxis_index=0,color="red",).set_global_opts(title_opts=opts.TitleOpts(title="行为评分卡模型表现"),).extend_axis(yaxis=opts.AxisOpts(name="累计坏人占比",type_="value",min_=0,max_=0.5,position="right",axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="red")),axislabel_opts=opts.LabelOpts(formatter="{value}"),)).add_xaxis(list(val_repot.index)).add_yaxis("KS",list(val_repot['KS']),yaxis_index=1,color="blue",label_opts=opts.LabelOpts(is_show=False),)
)
line.render_notebook()

在这里插入图片描述

import seaborn as sns
sns.distplot(val.score,kde=True)val = val.sort_values('score',ascending=True).reset_index(drop=True)
df2=val.bad_ind.groupby(val['level']).sum()
df3=val.bad_ind.groupby(val['level']).count()
print(df2/df3) 

在这里插入图片描述

总结

相关文章:

逻辑回归评分卡

文章目录 一、基础知识点(1)逻辑回归表达式(2)sigmoid函数的导数损失函数(Cross-entropy, 交叉熵损失函数)交叉熵求导准确率计算评估指标 二、导入库和数据集导入库读取数据 三、分析与训练四、模型评价ROC曲线KS值再做特征筛选生成报告 五、行为评分卡模型表现总结 一、基础知…...

DPDK系列之三十三DPDK并行机制的底层支持

一、背景介绍 在前面介绍了DPDK中的上层对并行的支持&#xff0c;特别是对多核的支持。但是&#xff0c;大家都知道&#xff0c;再怎么好的设计和架构&#xff0c;再优秀的编码&#xff0c;最终都要落到硬件和固件对整个上层应用的支持。单纯的硬件好处理&#xff0c;一个核不…...

LVGL_基础控件滚轮roller

LVGL_基础控件滚轮roller 1、创建滚轮roller控件 /* 创建一个 lv_roller 部件(对象) */ lv_obj_t * roller lv_roller_create(lv_scr_act()); // 创建一个 lv_roller 部件(对象),他的父对象是活动屏幕对象// 将部件(对象)添加到组&#xff0c;如果设置了默认组&#xff0c…...

王道考研操作系统——文件管理

磁盘的基础知识 .txt用记事本这个应用程序打开&#xff0c;文件最重要的属性就是文件名了 保护信息&#xff1a;操作系统对系统当中的各个用户进行了分组&#xff0c;不同分组的用户对文件的操作权限是不一样的 文件的逻辑结构就是文件内部的数据/记录应该被怎么组织起来&…...

商业智能系统的主要功能包括数据仓库、数据ETL、数据统计输出、分析功能

ETL服务内容包含&#xff1a; 数据迁移数据合并数据同步数据交换数据联邦数据仓库...

基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码

基于帝国主义竞争优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于帝国主义竞争优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.帝国主义竞争优化BP神经网络3.1 BP神经网络参数设置3.2 帝国主义竞争算…...

将python项目部署在一台服务器上

将python项目部署在一台服务器上 1.服务器2.部署方法2.1 手动部署2.2 容器化技术部署2.3 服务器less技术部署 1.服务器 服务器一般为&#xff1a;物理服务器和云服务器。 我的是物理服务器&#xff1a;这是将服务器硬件直接放置在您自己的数据中心或机房的传统方法。这种方法需…...

【C语言】善于利用指针(二)

&#x1f497;个人主页&#x1f497; ⭐个人专栏——C语言初步学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; ​ 目录 导读&#xff1a;1. 字符指针1.1 字符串的引用方式1.2 有趣的面试题 2. 数组指针2.1 一维数组指针的定义2.2 一维数组…...

Python调用C++

https://www.cnblogs.com/renfanzi/p/10276997.html Linux使用Python调用C/C接口(一) - 代码先锋网 linux系统上使用Python调用C生成的.so动态链接库opencv_linux 下python 编译为so ,给c使用_比赛学习者的博客-CSDN博客 https://www.cnblogs.com/shuimuqingyang/p/13618105…...

自己实现扫描全盘文件的函数。

1.自己实现扫描全盘的函数 def scan_disk(dir): global count,dir_count if os.path.isdir(dir): files os.listdir(dir) for file in files: print(file) dir_count 1 if os.path.isdir(dir os.sep file): …...

JSON文件读写

1、依赖文件 #include <QFile> #include <QJsonDocument> #include <QJsonObject> #include <QDebug> #include <QStringList>2、头文件 bool ReadJsonFile(const QString& filePath""); bool WriteJsonFile(const QString&…...

VisualStudio2022环境下Release模式编译dll无法使用TLS函数问题

Debug x86环境下正常使用TLS回调函数 切换到Release发现程序没有使用tls 到C/C > 优化中将全程序优化关闭即可...

ChatGPT基础使用总结

文章目录 一、ChatGPT基础概念大型语言模型LLMs---一种能够以类似人类语言的方式“说话”的软件ChatGPT定义---OpenAI 研发的一款聊天机器人程序&#xff08;2022年GPT-3.5&#xff0c;属于大型语言模型&#xff09;ChatGPT4.0---OpenAI推出了GPT系列的最新模型ChatGPT典型使用…...

解决报错: require is not defined in ES module scope

用node启动mjs文件报错&#xff1a;require is not defined in ES module scope 现象如下&#xff1a; 原因&#xff1a; 文件后缀是mjs, 被识别为es模块&#xff0c;但是node默认是commonjs格式&#xff0c;不支持也不能识别es模块。 解决办法&#xff1a;把文件后缀从.mjs改…...

STM32 10个工程篇:1.IAP远程升级(六)

在IAP远程升级的最后一篇博客里&#xff0c;笔者想概括性地梳理总结IAP程序设计中值得注意的问题&#xff0c;诚然市面上或者工作后存在不同版本的IAP下位机和上位机软件&#xff0c;也存在不同定义的报文格式&#xff0c;甚至对于相似的知识点不同教程又有着完全不同的解读&am…...

【智能家居项目】裸机版本——字体子系统 | 显示子系统

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《智能家居项目》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 今天实现上图整个项目系统中的字体子系统和显示子系统。 目录 &#x1f004;设计思路&#x1…...

PDF中跳转到参考文献后,如何回到原文

在PDF中&#xff0c;点击了参考文献的超链接可以直接跳至参考文献的位置。 如果想从当前参考文献在回到正文中对应位置时&#xff0c;可以通过 Alt \red{\text{Alt}} Alt ← \red{\leftarrow} ← 实现。...

了解基于Elasticsearch 的站内搜索,及其替代方案

对于一家公司而言&#xff0c;数据量越来越多&#xff0c;如果快速去查找这些信息是一个很难的问题&#xff0c;在计算机领域有一个专门的领域IR&#xff08;Information Retrival&#xff09;研究如何获取信息&#xff0c;做信息检索。在国内的如百度这样的搜索引擎也属于这个…...

【多模态融合】TransFusion学习笔记(2)

接上篇【多模态融合】TransFusion学习笔记(1)。 从TransFusion-L到TransFusion ok,终于可以给出论文中那个完整的框架图了&#xff0c;我第一眼看到这个图有几个疑问: Q&#xff1a;Image Guidance这条虚线引出的Query Initialization是什么意思? Q&#xff1a;图像分支中的…...

Pyhon-每日一练(1)

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...