linux——信号
目录
一.信号的保存
二.信号集操作
1.信号集
2.信号集操作函数
3.sigprocmask
4.sigpending
三. 信号的捕捉
1.内核态和用户态
2. sigaction
四.可重入函数
五.SIGCHLD信号
一.信号的保存
- 实际执行信号的处理动作称为信号递达(Delivery)。
- 信号从产生到递达之间的状态,称为信号未决(Pending)。
- 进程可以选择阻塞 (Block )某个信号。
- 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。
- 注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。
- 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
- SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
- SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。
- 如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。本章不讨论实时信号。
二.信号集操作
1.信号集
- 从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。
- 因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态。
- 在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。
- 阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。
2.信号集操作函数
sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的。
#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);
- 函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含 任何有效信号。
- 函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位,表示 该信号集的有效信号包括系统支持的所有信号。
- 注意,在使用sigset_ t类型的变量之前,一定要调 用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号。
- 这四个函数都是成功返回0,出错返回-1。sigismember是一个布尔函数,用于判断一个信号集的有效信号中是否包含某种 信号,若包含则返回1,不包含则返回0,出错返回-1。
3.sigprocmask
调用函数sigprocmask可以读取或更改进程的信号屏蔽字(阻塞信号集)。
#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
//返回值:若成功则为0,若出错则为-1
如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值。
如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达。
测试代码:
#include <iostream>
#include <signal.h>
#include <unistd.h>using namespace std;int main()
{// 1.创建信号集sigset_t set, old_set;// 2.清空信号集sigemptyset(&set);sigemptyset(&old_set);// 3.添加2号信号到信号集中sigaddset(&set, SIGINT);// 4.将信号集添加进当前进程信号屏蔽字sigprocmask(SIG_BLOCK, &set, &old_set);int count = 0;while (1){if (count == 7){// 解除对2信号的屏蔽cout << "解除对2信号的屏蔽,直接递达" << endl;sigprocmask(SIG_UNBLOCK, &set, NULL);}cout << "I am running" << endl;count++;sleep(1);}return 0;
}
测试结果:
首先屏蔽2号信号,7秒之后在解除对2号信号的屏蔽。如果再前7秒之间收到了2号信号,在解除屏蔽的一瞬间2号信号被递达。
观察BLOCK信号集的变化:
测试代码:
//打印信号集
void Print_Set_Block()
{sigset_t set;sigemptyset(&set);sigprocmask(SIG_BLOCK, NULL, &set);for (int i = 1; i <= 31; i++){if (sigismember(&set, i))cout << '1';elsecout << '0';}cout << "\n";
}
int main()
{// 1.创建信号集sigset_t set, old_set;// 2.清空信号集sigemptyset(&set);sigemptyset(&old_set);// 3.添加2号信号到信号集中sigaddset(&set, SIGINT);// 4.将信号集添加进当前进程信号屏蔽字cout << "对2信号的屏蔽" << endl;sigprocmask(SIG_BLOCK, &set, &old_set);int count = 0;while (1){if (count == 7){// 解除对2信号的屏蔽cout << "解除对2信号的屏蔽,直接递达" << endl;sigprocmask(SIG_UNBLOCK, &set, NULL);}cout << "I am running" << endl;Print_Set_Block();count++;sleep(1);}return 0;
}
测试结果:
4.sigpending
#include <signal.h>
int sigpending(sigset_t *set);
读取当前进程的未决信号集,通过set参数传出。调用成功则返回0,出错则返回-1。
测试代码:
我们希望看到在2号信号被阻塞的情况下,看到他的pending表的情况,和解除阻塞后的pending表的情况。
// 打印信号集
void Print_Set_Pend()
{sigset_t set;sigemptyset(&set);sigpending(&set);cout << "pending表:";for (int i = 1; i <= 31; i++){if (sigismember(&set, i))cout << '1';elsecout << '0';}cout << "\n";
}
void handler(int signo)
{cout << "收到信号:" << signo << endl;
}
int main()
{// 0.自定义捕捉2号信号signal(2, handler);// 1.创建信号集sigset_t set, old_set;// 2.清空信号集sigemptyset(&set);sigemptyset(&old_set);// 3.添加2号信号到信号集中sigaddset(&set, SIGINT);// 4.将信号集添加进当前进程信号屏蔽字cout << "对2信号屏蔽10秒" << endl;sigprocmask(SIG_BLOCK, &set, &old_set);int count = 0;while (1){if (count == 10){// 解除对2信号的屏蔽cout << "解除对2信号的屏蔽,直接递达" << endl;sigprocmask(SIG_UNBLOCK, &set, NULL);}// cout << "I am running" << endl;Print_Set_Pend();count++;sleep(1);}return 0;
}
测试结果:
三. 信号的捕捉
内核中什么时候对信号进行处理:
1.内核态和用户态
用户态和内核态是操作系统中的两种运行状态。用户态是指进程运行用户代码的状态,而内核态是指进程运行内核代码的状态 。在Linux中,进程从创建到退出,都会经历三种状态:用户态、内核态和系统调用态。当一个进程执行系统调用时,它会从用户态切换到内核态,然后等待内核处理完请求后,再从内核态切换回用户态。
如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。
由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下:
- 用户程序注册了SIGQUIT信号的处理函数sighandler。
- 当前正在执行main函数,这时发生中断或异常切换到内核态。
- 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。
- 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函 数,sighandler。
- 和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。
- sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。如果没有新的信号要递达,sys_sigreturn这次再返回用户态就是恢复main函数的上下文继续执行了。
2. sigaction
#include <signal.h>
int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);
//The sigaction structure is defined as something like:struct sigaction {void (*sa_handler)(int);void (*sa_sigaction)(int, siginfo_t *, void *);sigset_t sa_mask;int sa_flags;void (*sa_restorer)(void);
};
- sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回 - 1,signo是指定信号的编号。
- 若act指针非空,则根据act修改该信号的处理动作。若oact指针非空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体。
- 将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。
- 当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数,本章不详细解释这两个字段,有兴趣的同学可以在了解一下。
测试代码:
测试进程在收到二号信号以后,进入handler函数,屏蔽mask中的所有信号和2号信号。
void handler(int signo)
{while (1){cout << "收到信号:" << signo << endl;sleep(1);}
}int main()
{// 1.创建sigaction结构体struct sigaction sigc, oldsigc;memset(&sigc, 0, sizeof(sigc));memset(&sigc, 0, sizeof(oldsigc));// 2.填写成员// 2.1自定义捕捉sigc.sa_handler = handler;// 2.2在执行自定义捕捉函数时,想要屏蔽的信号,屏蔽2.3.4.5.6信号sigset_t set;sigemptyset(&set);sigaddset(&set, 3);sigaddset(&set, 4);sigaddset(&set, 5);sigaddset(&set, 6);sigc.sa_mask = set;// 3.写入进程sigaction(2, &sigc, &oldsigc);while (1){cout << "I am running,pid:" << getpid() << endl;sleep(1);}return 0;
}
测试结果:
四.可重入函数
- main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的 时候,因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了。
- 像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。想一下,为什么两个不同的控制流程调用同一个函数,访问它的同一个局部变量或参数就不会造成错乱?
- 因为两个执行流访问的是函数内部的局部变量,会分别开辟函数栈帧,相当于尽管是同一个函数,但是对于不同的执行流来说,函数都是各自私有的,不会互相干扰,且局部变量执行流出了作用域就会销毁。
如果一个函数符合以下条件之一则是不可重入的:
- 调用了malloc或free,因为malloc也是用全局链表来管理堆的。
- 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构
五.SIGCHLD信号
进程一章讲过用wait和waitpid函数清理僵尸进程,父进程可以阻塞等待子进程结束,也可以非阻 塞地查询是否有子进程结束等待清理(也就是轮询的方式)。采用第一种方式,父进程阻塞了就不 能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一 下,程序实现复杂。
其实,子进程在终止时会给父进程发SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自 定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程 终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可。
测试代码:
void handler(int signo)
{sleep(3);int status = 0;waitpid(-1, &status, WNOHANG);
}int main()
{signal(SIGCHLD, handler);pid_t pid = fork();if (pid == 0){int count = 3;while (count){cout << "我是子进程,pid:" << getpid() << ":" << count << endl;sleep(1);count--;}exit(2);}while (1){cout << "父进程" << endl;sleep(5);}return 0;
}
测试结果:
事实上,由于UNIX 的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调 用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不 会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略 通常是没有区别的,但这是一个特例。此方法对于Linux可用,但不保证在其它UNIX系统上都可 用。
测试代码:
int main()
{// 1.创建sigaction结构体struct sigaction sigc;memset(&sigc, 0, sizeof(sigc));// 2.设置sa_handler为SIG_IGN;sigc.sa_handler = SIG_IGN;// 写入当前进程sigaction(SIGCHLD, &sigc, NULL);int tmp = 10;while (tmp--){// 创建子进程pid_t pid = fork();if (pid == 0){int count = 3;while (count){cout << "我是子进程,pid:" << getpid() << ":" << count << endl;sleep(1);count--;}exit(2);}}while (1){cout << "父进程" << endl;sleep(5);}return 0;
}
测试结果:
相关文章:

linux——信号
目录 一.信号的保存 二.信号集操作 1.信号集 2.信号集操作函数 3.sigprocmask 4.sigpending 三. 信号的捕捉 1.内核态和用户态 2. sigaction 四.可重入函数 五.SIGCHLD信号 一.信号的保存 实际执行信号的处理动作称为信号递达(Delivery)。信号从产生到递达之间的状…...

存档&改造【03】Apex-Fancy-Tree-Select花式树的导入及学习
Apex-Fancy-Tree-Select git学习网页 GitHub - RonnyWeiss/Apex-Fancy-Tree-Select: Fancy Tree Plug-in for Oracle APEX 如何从其他应用程序导出已有插件到新应用程序中 1.从其他应用程序导出插件 其他应用程序-【共享组件】-【插件】-【任务 导出插件】-选择想要导出的…...

【单片机】14-I2C通信之EEPROM
1.EEPROM概念 1.EEPROM 1.1 一些概念 (1)一些概念:ROM【只读存储器---硬盘】,RAM【随机访问存储器--内存】,PROM【可编程的ROM】,EPROM【可擦除ROM】,EEPROM【电可擦除ROM】 1.2 为什么需要EE…...

Mini-dashboard 和meilisearch配合使用
下载的meilisearch一般是development模式,内置客户端,修改客户端后需要重要全部编译,花时间太长了。前后端分离才是正道,客户端修改不用重新编译后端。 方法如下: 1、修改配置文件/etc/meilisearch.toml,…...
leetcode 886. 可能的二分法
给定一组 n 人(编号为 1, 2, …, n), 我们想把每个人分进任意大小的两组。每个人都可能不喜欢其他人,那么他们不应该属于同一组。 给定整数 n 和数组 dislikes ,其中 dislikes[i] [ai, bi] ,表示不允许将…...

Elasticsearch:使用 ELSER 文本扩展进行语义搜索
在今天的文章里,我来详细地介绍如何使用 ELSER 进行文本扩展驱动的语义搜索。 安装 Elasticsearch 及 Kibana 如果你还没有安装好自己的 Elasticsearch 及 Kibana,请参考如下的链接来进行安装: 如何在 Linux,MacOS 及 Windows 上…...
OpenRadar DOA函数 Bartlett/CBF和Capon使用
Bartlett / CBF原理看这里 Capon原理看这里 这里只讲怎么调用openradar提供的aoa_bartlett和aoa_capon函数: 一些吐槽:虽然看起来openradar的作者代码水平很高,但里面有很多匪夷所思的写法,比如他demo里的解析文件格式就很迷啊等…...

二叉树--翻转二叉树
文章前言:如果有小白同学还是对于二叉树不太清楚,作者推荐:二叉树的初步认识_加瓦不加班的博客-CSDN博客 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 如果思路不清楚,请看动态页面&am…...

强化学习环境 - robogym - 学习 - 3
强化学习环境 - robogym - 学习 - 3 文章目录 强化学习环境 - robogym - 学习 - 3项目地址为什么选择 robogymObservation - 观测信息Action - 动作信息Initialization - 初始状态设置 项目地址 https://github.com/openai/robogym 为什么选择 robogym 自己的项目需要做一些机…...

CUDA+cuDNN+TensorRT 配置避坑指南
深度学习模型加速部署的环境配置,需要在本地安装NVIDIA的一些工具链和软件包,这是一个些许繁琐的过程,而且一步错,步步错。笔者将会根据自己的经验来提供建议,减少踩坑几率。当然可以完全按照官方教程操作,…...

关于PointHeadBox类的理解
forward函数 def forward(self, batch_dict):"""Args:batch_dict:batch_size:point_features: (N1 N2 N3 ..., C) or (B, N, C)point_features_before_fusion: (N1 N2 N3 ..., C)point_coords: (N1 N2 N3 ..., 4) [bs_idx, x, y, z]point_labels (opti…...
javascript二维数组(10)ajax的使用
在JQuery中,使用AJAX的方法主要有以下几种: $.ajax():这是JQuery中最通用的AJAX请求方法。它需要一个包含各种参数的对象,其中包括请求的URL、请求方式、数据类型、请求参数等。请求成功后执行的回调函数也是通过参数来定义的。 …...

CMMI5认证哪些企业可以申请
CMMI5认证哪些企业可以申请 什么是CMMI5认证 CMMI(Capability Maturity Model Integration)是一种用于评估组织的软件工程能力的国际标准。CMMI模型包括5个等级,其中CMMI5是最高等级,代表组织具有达到持续优化和创新的能力。获得…...

【iptables 实战】9 docker网络原理分析
在开始本章阅读之前,需要提前了解以下的知识 阅读本节需要一些docker的基础知识,最好是在linux上安装好docker环境。提前掌握iptables的基础知识,前文参考【iptables 实战】 一、docker网络模型 docker网络模型如下图所示 说明࿱…...

【多级缓存】
文章目录 1. JVM进程缓存2. Lua语法3. 实现多级缓存3.1 反向代理流程3.2 OpenResty快速入门 4. 查询Tomcat4.1 发送http请求的API4.2 封装http工具4.3 基于ID负载均衡4.4 流程小结 5. Redis缓存查询5.1 实现Redis查询 6. Nginx本地缓存6.1 本地缓存API6.2 实现本地缓存查询 7. …...

第五课 树与图
文章目录 第五课 树与图lc94.二叉树的中序遍历--简单题目描述代码展示 lc589.N叉树的层序遍历--中等题目描述代码展示 lc297.二叉树的序列化和反序列化--困难题目描述代码展示 lc105.从前序与中序遍历序列构造二叉树--中等题目描述代码展示 lc106.从中序与后序遍历序列构造二叉…...
2023-10-07 事业-代号z-副业-CQ私服-调研与分析
摘要: CQ作为一款运营了20年的游戏, 流传出的私服可以说是层出不穷, 到了现在我其实对这款游戏的长线运营的前景很悲观. 但是作为商业的一部分, 对其做谨慎的分析还是很有必要的. 传奇调研的来源: 一. 各种售卖私服的网站 传奇服务端版本库-传奇手游源码「免费下载」传奇GM论…...

合并不同门店数据-上下合并
项目背景:线下超市分店,统计产品的销售数量和销售额,并用透视表计算求和 merge()函数可以根据链接键横向连接两张不同表,concat()函数可以上下合并和左右合并2种不同的合并方式。merge()函数只能横向连接两张表,而con…...

学习记忆——数学篇——案例——算术——整除特点
理解记忆法 对于数的整除特征大家都比较熟悉:比如4看后两位(因为100是4的倍数),8看后三位(因为1000是8的倍数),5末尾是0或5,3与9看各位数字和等等,今天重点研究一下3,9,…...

PHP8中的魔术方法-PHP8知识详解
在PHP 8中,魔术方法是一种特殊的方法,它们以两个下划线(__)开头。魔术方法允许您定义类的行为,例如创建对象、调用其他方法或访问和修改类的属性。以下是一些常见的魔术方法: __construct(): 类的构造函数…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...