【数据结构】红黑树
红黑树
- 一、红黑树的概念
- 二、红黑树的接口
- 2.1 插入
- 三、验证
- 四、源码
一、红黑树的概念

红黑树也是一个二叉搜索树,他是通过对任何一条从根到叶子的路径上各个结点着色方式的限制,最长路径长度不超过最短路径长度的 2 倍保持近似平衡。他在每个节点添加了一个变量用来表示颜色 :Black或者Red,为了满足上面的条件,着色必须满足性质:
1️⃣每个结点不是红色就是黑色
2️⃣ 根节点是黑色的
3️⃣ 如果一个节点是红色的,则它的两个孩子结点是黑色的(没有连续的红色节点)
4️⃣ 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
5️⃣ 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
由此可以满足最长路径长度不超过最短路径长度的 2 倍(通过第四点就可以看出)。
既然不能保证绝对平衡,那么搜索性能肯定不如AVL树,那么为什么还要有红黑树呢?
首先要知道AVL树保持平衡的方法是频繁的旋转,而红黑树则不需要严格的平衡,会少很多旋转。
二、红黑树的接口
红黑树节点定义:
节点需要有个颜色的变量,可以使用枚举的方法:
enum Colour
{RED,BLACK,
};template <class K, class V>
struct RBTreeNode
{RBTreeNode(const pair<K, V>& kv): _kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}pair<K, V> _kv;AVLNode<K, V>* _left;AVLNode<K, V>* _right;AVLNode<K, V>* _parent;Colour _col;
};
2.1 插入
我们可以看到节点初始化的时候默认为RED,因为如果要插入BLACK,那么一定会导致错误,不满足对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点。
所以只能把新节点默认设置为RED,因为如果是红色有可能父节点是黑色,这样就没有出现连续的红色。
总结一下:
插入黑色节点一定有问题,插入红色节点有可能会出问题。
插入的流程根AVL树一样,检查父亲节点,如果是黑就结束,如果是红就要调整红黑树。
为了方便说明,cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
首先要知道最主要的是看u
情况一:cur为红,p为红,g为黑,u存在且为红 :

为什么要看u节点,因为如果cur为红且p为红,那么g一定为黑。所以唯一的变数就为u
它的调整方法为:

首先p肯定要变黑,而为了使g两边的子树黑节点数目相同,u也要变黑。至于g,我们先把它变红,因为如果这颗树是子树而g还是黑,那么相当于这颗子树的黑节点多了一个,会影响到别的子树。如果g为根那么就把g变为黑。
这里要注意继续往上处理:
把g当成cur,继续向上调整。
举个例子:

可以看到绿色部分就为上面的抽象图,就这么往上循环改变颜色即可。
情况二:cur为红,p为红,g为黑,u不存在/u为黑

此时要对u分情况讨论:
1️⃣ u不存在时,那么cur一定是新增节点,因为如果cur不是新增节点,那么cur和p一定有一个节点为黑,这样就不满足黑节点数目相同的条件。

处理方式就为右单旋

2️⃣ u存在且为黑

总结一下:
u不存在则cur是新增节点,u存在那么就是由情况一变换过来的。
情况二的处理方法就是旋转+变色。
情况三: cur为红,p为红,g为黑,u不存在/u为黑
情况三与情况二的区别就是情况二是直线,情况三是折线,经过AVL的学习我们知道这种情况要双旋。

情况三也是由其他情况变过来的。
此时我们就需要进行双旋调整红黑树。

左单旋后变成了情况二,那么按照情况二的方法进行右旋即可。

以上三种情况的代码如下:
while (parent && parent->_col == RED)
{// 找g 与 uNode* g = parent->_parent;if (parent == g->_left){Node* u = g->_right;// 情况一 u存在且为红if (u && u->_col == RED){parent->_col = u->_col = BLACK;g->_col = RED;// 继续往上处理cur = g;parent = cur->_parent;}else // 情况二或情况三{if (cur == parent->_left)// 情况二{// g// p// cRotateR(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{// g// p// cRotateL(parent);RotateR(g);// c// p gcur->_col = BLACK;g->_col = RED;}break;}}else{Node* u = g->_left;// 情况一if (u && u->_col == RED){u->_col = parent->_col = BLACK;g->_col = RED;cur = g;parent = cur->_parent;}else{// 情况二// g// p// cif (cur == parent->_right){RotateL(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{// g// p// cRotateR(parent);RotateL(g);cur->_col = BLACK;g->_col = RED;}break;}}
}
// 上面有可能把_root的颜色变为红
_root->_col = BLACK;
return true;
}
三、验证
想要验证是否是红黑树,首先要保证是搜索树(中序遍历有序)。
其次还要判断根节点是否为黑,是否有两个红的相连(检查红节点的父亲),每条路径上的黑节点数目相同(随便找一条路径测出标准值)。
怎么测每条路径的黑节点数目是否相同?
测一条路径的黑节点数目当作标准值,递归过程中遇到黑节点就记录,到空说明该路径走完,比对标准值,如果不同就返回false。
bool _IsBalance(Node* root, int i, int flag)
{if (root == nullptr){if (i != flag){cout << "errno: 左右子树黑色节点数目不同" << endl;return false;}return true;}// 红节点时判断父亲if (root->_col == RED){if (root->_parent->_col == RED){cout << "errno: 红-红" << endl;return false;}}if (root->_col == BLACK){i++;}return _IsBalance(root->_left, i, flag) && _IsBalance(root->_right, i, flag);
}bool IsBalance()
{if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}// 找标准值Node* cur = _root;int flag = 0;while (cur){if (cur->_col == BLACK){flag++;}cur = cur->_left;}int i = 0;return _IsBalance(_root, i, flag);
}
四、源码
#pragma once
#include <iostream>
#include <cstdlib>
#include <cassert>
#include <string>using namespace std;enum Colour
{RED,BLACK,
};template <class K, class V>
struct RBTreeNode
{RBTreeNode(const pair<K, V>& kv): _kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED){}pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Colour _col;
};template <class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else return false;}cur = new Node(kv);if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;while (parent && parent->_col == RED){// 找g 与 uNode* g = parent->_parent;if (parent == g->_left){Node* u = g->_right;// 情况一 u存在且为红if (u && u->_col == RED){parent->_col = u->_col = BLACK;g->_col = RED;// 继续往上处理cur = g;parent = cur->_parent;}else // 情况二或情况三{if (cur == parent->_left)// 情况二{// g// p// cRotateR(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{// g// p// cRotateL(parent);RotateR(g);// c// p gcur->_col = BLACK;g->_col = RED;}break;}}else{Node* u = g->_left;// 情况一if (u && u->_col == RED){u->_col = parent->_col = BLACK;g->_col = RED;cur = g;parent = cur->_parent;}else{// 情况二// g// p// cif (cur == parent->_right){RotateL(g);parent->_col = BLACK;g->_col = RED;}else// 情况三{// g// p// cRotateR(parent);RotateL(g);cur->_col = BLACK;g->_col = RED;}break;}}}// 上面有可能把_root的颜色变为红_root->_col = BLACK;return true;}void RotateL(Node* parent){Node* top = parent->_parent;Node* right = parent->_right;parent->_right = right->_left;if (right->_left) right->_left->_parent = parent;right->_left = parent;parent->_parent = right;if (top)// 子树{if (parent == top->_left) top->_left = right;else top->_right = right;right->_parent = top;}else// 完整的树{_root = right;_root->_parent = nullptr;}}void RotateR(Node* parent){Node* top = parent->_parent;Node* left = parent->_left;Node* leftR = left->_right;parent->_left = leftR;if (leftR) leftR->_parent = parent;left->_right = parent;parent->_parent = left;if (top){if (parent == top->_left) top->_left = left;else top->_right = left;left->_parent = top;}else{_root = left;_root->_parent = nullptr;}}void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << "<=>" << root->_kv.second << endl;_Inorder(root->_right);}void Inorder(){_Inorder(_root);}bool _IsBalance(Node* root, int i, int flag){if (root == nullptr){if (i != flag){cout << "errno: 左右子树黑色节点数目不同" << endl;return false;}return true;}// 红节点时判断父亲if (root->_col == RED){if (root->_parent->_col == RED){cout << "errno: 红-红" << endl;return false;}}if (root->_col == BLACK){i++;}return _IsBalance(root->_left, i, flag) && _IsBalance(root->_right, i, flag);}bool IsBalance(){if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}// 找标准值Node* cur = _root;int flag = 0;while (cur){if (cur->_col == BLACK){flag++;}cur = cur->_left;}int i = 0;return _IsBalance(_root, i, flag);}private:Node* _root = nullptr;
};void test()
{RBTree<int, int> bb;const int N = 10000;srand(time(0));for (int i = 0; i < N; i++){size_t x = rand();bb.insert(make_pair(x, x));}/*int a[] = { 16, 3, 7, 11, 9, 26, 18, 14};for (auto e : a){bb.insert(make_pair(e, e));}*/cout << bb.IsBalance();
}
相关文章:
【数据结构】红黑树
红黑树一、红黑树的概念二、红黑树的接口2.1 插入三、验证四、源码一、红黑树的概念 红黑树也是一个二叉搜索树,他是通过对任何一条从根到叶子的路径上各个结点着色方式的限制,最长路径长度不超过最短路径长度的 2 倍保持近似平衡。他在每个节点添加了一…...
从C++的角度理解C#的Event
由于技术背景是C起家的,所以对于C的概念很清楚,遇到C#的EVENT时候,总感觉这个概念比较抽象,不容易理解,但是当使用函数指针和回调函数来理解EVENT的时候,这个概念就清晰了。 首先对于EVENT来讲,…...
商城进货记录交易-课后程序(JAVA基础案例教程-黑马程序员编著-第七章-课后作业)
【实验7-2】商城进货记录交易 【任务介绍】 1.任务描述 每个商城都需要进货,而这些进货记录整理起来很不方便,本案例要求编写一个商城进货记录交易的程序,使用字节流将商场的进货信息记录在本地的csv文件中。程序具体要求如下: …...
【正点原子FPGA连载】第十七章双核AMP实验 摘自【正点原子】DFZU2EG_4EV MPSoC之嵌入式Vitis开发指南
1)实验平台:正点原子MPSoC开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id692450874670 3)全套实验源码手册视频下载地址: http://www.openedv.com/thread-340252-1-1.html 第十七章双核AMP…...
内存管理框架---页(一)
文章目录物理内存的模型非一致内存访问--NUMA一致内存访问模型--UMA内存管理架构页页框管理页描述符页描述符字段flags字段详解gfp_mask 标志获得页alloc_pages__get_free_pages获得填充为0的页释放页kmallocvmalloc参考资料你用心写的每一篇文章,可能会带别人和自己…...
华为OD机试真题Python实现【流水线】真题+解题思路+代码(20222023)
流水线 题目 一个工厂有m条流水线 来并行完成n个独立的作业 该工厂设置了一个调度系统 在安排作业时,总是优先执行处理时间最短的作业 现给定流水线个数m 需要完成的作业数n 每个作业的处理时间分别为 t1,t2...tn 请你编程计算处理完所有作业的耗时为多少 当n > m时 首先…...
「JVM 编译优化」Graal 编译器
文章目录1. 历史背景2. 构建编译调试环境3. JVMCI 编译器接口4. 代码中间表示5. 代码优化与生成1. 历史背景 Graal 编译器在 JDK 9 以 Jaotc 提前编译工具的形式首次加入到官方的 JDK 中,JDK 10 开始提供替换(得益于 HotSpot 编译器接口,Jav…...
蓝牙标签操作指南
一、APP安装指南 1.APP权限问题 电子标签APP安装之后,会提示一些权限的申请,点击允许。否则某些会影响APP的正常运行。安装后,搜索不到蓝牙标签,可以关闭App,重新打开。 2.手机功能 运行APP时候,需要打开…...
嵌入式 Linux Shell编程
目录 1、shell脚本 2、执行shell脚本 3、shell脚本编写 3.1 shell变量 3.2 标准变量或环境变量 3.4 变量赋值有五种格式 3.5 运算符和表达式 关系运算符 布尔运算符 3.6 Test命令用法 1、判断表达式 2、判断字符串 3.判断整数 4、判断文件 3.7 数组 1、数组定义…...
Web前端学习:一
编辑器的基础使用 编辑器推荐使用: HBuilderx(免费中文)(建议使用) Sublime(免费英文) Sublime中文设置方法,下载语言插件: 1、进入Sublime后,ShiftCtrlP…...
SpringBoot集成Redis实现分布式会话
在单体应用的时代,Session 会话直接保存在服务器中,实现非常简单,但是随着微服务的流行,现代应用架构基本都是分布式架构,请求随机的分配到后端的多个应用中,此时session就需要共享,而存储在red…...
2023年关于身份安全的4 个预测
如果您身处技术领域,就会知道现在是时候盘点过去的一年,展望未来 365 天将影响业务、创新以及我们工作方式的因素的季节。这不是一门精确的科学,我们也不总是对的。但是推测很有趣,当我们看到其中一些趋势成为现实时会更有趣。本文…...
Linux期末考试应急
Linux期末考试应急 虚拟机添加硬盘、分区、格式化、挂载、卸载 fdisk -l#查看系统现有分区fdisk <指定磁盘>#指定磁盘分区sudo mkfs.ext3 <指定分区>#格式化磁盘###挂载磁盘1.新建一个目录sudo mkdir /mnt/test2.将指定分区挂载到对应目录sudo mount /dev/sdb10 /…...
mars3d对geojson图层分属性设置样式
开发中可能会遇到如下需求,在全省的数据中按某个属性⾼亮展示某市区。此时就需要使⽤分属性样式的api了。⽂档如下。GeoJsonLayer - Mars3D API文档属性是根据⽮量数据的属性进⾏匹配。可以通过 layer.graphics[0]?.attr ⽅式获取。 指导有哪些属性之后先设置…...
三、锁相关知识
文章目录锁的分类可重入锁、不可重入锁乐观锁、悲观锁公平锁、非公平锁互斥锁、共享锁深入synchronized类锁、对象锁synchronized的优化synchronized实现原理synchronized的锁升级重量锁底层ObjectMonitor深入ReentrantLockReentrantLock和synchronized的区别AQS概述加锁流程源…...
C语言数据类型
C 数据类型 在 C 语言中,数据类型指的是用于声明不同类型的变量或函数的一个广泛的系统。变量的类型决定了变量存储占用的空间,以及如何解释存储的位模式。 C 中的类型可分为以下几种: 1 基本类型: 它们是算术类型,…...
华为OD机试真题Python实现【水仙花数】真题+解题思路+代码(20222023)
水仙花数 题目 所谓的水仙花数是指一个n位的正整数其各位数字的n次方的和等于该数本身, 例如153 = 1^3 + 5^3 + 3^3,153是一个三位数 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总 输入 第一行输入一个整数N, 表示 N 位的正整数 N 在3…...
【华为OD机试模拟题】用 C++ 实现 - 非严格递增连续数字序列(2023.Q1)
最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…...
RN面试题
RN面试题1.React Native相对于原生的ios和Android有哪些优势?1.性能媲美原生APP 2.使用JavaScript编码,只要学习这一种语言 3.绝大部分代码安卓和IOS都能共用 4.组件式开发,代码重用性很高 5.跟编写网页一般,修改代码后即可自动刷…...
【数据存储】浮点型在内存中的存储
目录 一、存储现象 二、IEEE标准规范 1.存储 2.读取 三、举例验证 1.存储 2.读取 浮点型存储的标准是IEEE(电气电子工程师学会)754制定的。 一、存储现象 浮点数由于其有小数点的特殊性,有很多浮点数是不能精确存储的,如&#…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
