Pytorch笔记之回归
文章目录
- 前言
- 一、导入库
- 二、数据处理
- 三、构建模型
- 四、迭代训练
- 五、结果预测
- 总结
前言
以线性回归为例,记录Pytorch的基本使用方法。
一、导入库
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.autograd import Variable # 定义求导变量
from torch import nn, optim # 定义网络模型和优化器
二、数据处理
将数据类型转为tensor,第一维度变为batch_size
# 构建数据
x = np.random.rand(100)
noise = np.random.normal(0, 0.01, x.shape)
y = 0.1 * x + 0.2 + noise
# 数据处理
x_data = torch.FloatTensor(x.reshape(-1, 1))
y_data = torch.FloatTensor(y.reshape(-1, 1))
inputs = Variable(x_data)
target = Variable(y_data)
三、构建模型
1、继承nn.Module,定义一个线性回归模型。在__init__中定义连接层,定义前向传播的方法
2、实例化模型,定义损失函数与优化器
# 继承模型
class LinearRegression(nn.Module):def __init__(self):super().__init__()self.fc = nn.Linear(1, 1)def forward(self, x):out = self.fc(x)return out
# 定义模型
print('模型参数')
model = LinearRegression()
mse_loss = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
for name, param in model.named_parameters():print('{}:{}'.format(name, param))

四、迭代训练
1、梯度清零:optimizer.zero_grad()
2、反向传播计算梯度值:loss.backward()
3、执行参数更新:optimizer.step()
循环迭代,定期输出损失值
print('损失值')
for i in range(1001):out = model.forward(inputs)loss = mse_loss(out, target)optimizer.zero_grad()loss.backward()optimizer.step()if i % 200 == 0:print(i, loss.item())

五、结果预测
绘制样本的散点图与预测值的折线图
print('结果预测')
y_pred = model(x_data)
plt.plot(x, y, 'b.')
plt.plot(x, y_pred.data.numpy(), 'r-')
plt.show()

总结
使用Pytorch进行训练主要的三步:
(1)数据处理:将数据维度转换为(batch, *),数据类型转换为可训练的tensor;
(2)构建模型:继承nn.Module,定义连接层与运算方法,实例化,定义损失函数与优化器;
(3)迭代训练:循环迭代,依次执行梯度清零、梯度计算、参数更新。
相关文章:
Pytorch笔记之回归
文章目录 前言一、导入库二、数据处理三、构建模型四、迭代训练五、结果预测总结 前言 以线性回归为例,记录Pytorch的基本使用方法。 一、导入库 import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Variable # 定义求…...
哪个证券公司可以加杠杆,淘配网是您的杠杆综合网站!
在证券市场中,投资者经常寻求提高资金杠杆以获得更高的回报。杠杆交易可以让您在不必拥有等额本金的情况下,参与更多的交易活动。然而,为了进行杠杆交易,您需要找到一家证券公司或平台,可以为您提供这种服务。本文将介…...
万字解读|怎样激活 TDengine 最高性价比?
不知不觉间,TDengine 已经 6 岁多了。在这 6 年多的时间里,我们从零开始,在一行又一行代码的淬炼下,TDengine 从 1.6 走过 2.0,终于走到如今的 3.0 时代。 自 2022 年下旬发布以来,经过我们不断地打磨优化…...
【目标检测】大图包括标签切分,并转换成txt格式
前言 遥感图像比较大,通常需要切分成小块再进行训练,之前写过一篇关于大图裁切和拼接的文章【目标检测】图像裁剪/标签可视化/图像拼接处理脚本,不过当时的工作流是先将大图切分成小图,再在小图上进行标注,于是就不考…...
gitlab登录出现的Invalid login or password问题
前提 我是在一个项目里创建的gitlab账号,想在别的项目里登录或者官网登录发现怎么都登陆不上 原因 在GitLab中,有两种不同的账号类型:项目账号和个人账号(官网账号)。 项目账号:项目账号是在特定GitLab…...
git本地创建分支并推送到远程
1. 创建本地分支并切换到该分支 比如我创建dev分支。git checkout -b相当于把两条命令git branch 分支名、git checkout分支名合成一条,来实现一条命令新建分支切换分支。 git checkout -b dev 2. 将dev分支推送到远程 -u参数与--set-upstream这一串是一个意思&am…...
手机待办事项app哪个好?
手机是日常很多人随身携带的设备,手机除了拥有通讯功能外,还能帮助大家高效管理日常工作,借助手机上的待办事项提醒APP可以快速地帮助大家规划日常事务,提高工作的效率。 过去,我也曾经在寻找一款能够将工作任务清晰罗…...
容器运行elasticsearch安装ik分词非root权限安装报错问题
有些应用默认不允许root用户运行,来确保应用的安全性,这也会导致我们使用docker run后一些操作问题,用es安装ik分词器举例(es版本8.9.0,analysis-ik版本8.9.0) 1. 容器启动elasticsearch 如挂载方式&…...
UE4游戏客户端开发进阶学习指南
前言 两年多前写过一篇入门指南,教大家在短时间内快速入门UE4的使用,在知乎被很多人收藏了。如今鸡佬使用UE快三年了,是时候更新一下进阶版本的学习指南。本文对于读者的要求: 有一定的C基础已经入门UE,能够用蓝图和…...
javaee SpringMVC 乱码问题解决
方法一 在web.xml文件中注册过滤器 <!-- 注册过滤器 设置编码 --><filter><filter-name>CharacterEncodingFilter</filter-name><filter-class>org.springframework.web.filter.CharacterEncodingFilter</filter-class><init-param&…...
用ChatGPT做数据分析,提升10倍工作效率
目录 写报告分析框架报告框架指标体系设计 Excel 写报告 分析框架 拿到一个专题不知道怎么做?没关系,用ChatGPT列一下框架。 以上分析框架挺像那么回事,如果没思路的话,问问ChatGPT能起到找灵感的作用。 报告框架 报告的框架…...
【Pytorch笔记】4.梯度计算
深度之眼官方账号 - 01-04-mp4-计算图与动态图机制 前置知识:计算图 可以参考我的笔记: 【学习笔记】计算机视觉与深度学习(2.全连接神经网络) 计算图 以这棵计算图为例。这个计算图中,叶子节点为x和w。 import torchw torch.tensor([1.]…...
浏览器安装vue调试工具
下载扩展程序文件 下载链接:链接: 下载连接网盘地址, 提取码: 0u46,里面有两个crx,一个适用于vue2,一个适用于vue3,可根据vue版本选择不同的调试工具 crx安装扩展程序不成功,将文件改为rar文件然后解压 安装…...
C/C++学习 -- RSA算法
概述 RSA算法是一种广泛应用于数据加密与解密的非对称加密算法。它由三位数学家(Rivest、Shamir和Adleman)在1977年提出,因此得名。RSA算法的核心原理是基于大素数的数学问题的难解性,利用两个密钥来完成加密和解密操作。 特点 …...
基于若依ruoyi-nbcio支持flowable流程增加自定义业务表单(一)
因为需要支持自定义业务表单的相关流程,所以需要建立相应的关联表 1、首先先建表wf_custom_form -- ---------------------------- -- Table structure for wf_custom_form -- ---------------------------- DROP TABLE IF EXISTS wf_custom_form; CREATE TABLE wf…...
面试经典 150 题 1 —(数组 / 字符串)— 88. 合并两个有序数组
88. 合并两个有序数组 方法一: class Solution { public:void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {for(int i 0; i<n;i){nums1[mi] nums2[i];}sort(nums1.begin(),nums1.end());} };方法二: clas…...
【大数据 | 综合实践】大数据技术基础综合项目 - 基于GitHub API的数据采集与分析平台
🤵♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…...
超高频RFID模具精细化生产管理方案
近二十年来,我国的模具行业经历了快速发展的阶段,然而,模具行业作为一个传统、复杂且竞争激烈的行业,企业往往以订单为导向,每个订单都需要进行新产品的开发,从客户需求分析、结构确定、报价、设计、物料准…...
FP-Growth算法全解析:理论基础与实战指导
目录 一、简介什么是频繁项集?什么是关联规则挖掘?FP-Growth算法与传统方法的对比Apriori算法Eclat算法 FP树:心脏部分 二、算法原理FP树的结构构建FP树第一步:扫描数据库并排序第二步:构建树 挖掘频繁项集优化&#x…...
Jmeter 分布式压测,你的系统能否承受高负载?
你可以使用 JMeter 来模拟高并发秒杀场景下的压力测试。这里有一个例子,它模拟了同时有 5000 个用户,循环 10 次的情况。 请求默认配置 token 配置 秒杀接口 结果分析 但是,实际企业中,这种压测方式根本不满足实际需求。下…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
