Pytorch笔记之回归
文章目录
- 前言
- 一、导入库
- 二、数据处理
- 三、构建模型
- 四、迭代训练
- 五、结果预测
- 总结
前言
以线性回归为例,记录Pytorch的基本使用方法。
一、导入库
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.autograd import Variable # 定义求导变量
from torch import nn, optim # 定义网络模型和优化器
二、数据处理
将数据类型转为tensor,第一维度变为batch_size
# 构建数据
x = np.random.rand(100)
noise = np.random.normal(0, 0.01, x.shape)
y = 0.1 * x + 0.2 + noise
# 数据处理
x_data = torch.FloatTensor(x.reshape(-1, 1))
y_data = torch.FloatTensor(y.reshape(-1, 1))
inputs = Variable(x_data)
target = Variable(y_data)
三、构建模型
1、继承nn.Module,定义一个线性回归模型。在__init__中定义连接层,定义前向传播的方法
2、实例化模型,定义损失函数与优化器
# 继承模型
class LinearRegression(nn.Module):def __init__(self):super().__init__()self.fc = nn.Linear(1, 1)def forward(self, x):out = self.fc(x)return out
# 定义模型
print('模型参数')
model = LinearRegression()
mse_loss = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
for name, param in model.named_parameters():print('{}:{}'.format(name, param))
四、迭代训练
1、梯度清零:optimizer.zero_grad()
2、反向传播计算梯度值:loss.backward()
3、执行参数更新:optimizer.step()
循环迭代,定期输出损失值
print('损失值')
for i in range(1001):out = model.forward(inputs)loss = mse_loss(out, target)optimizer.zero_grad()loss.backward()optimizer.step()if i % 200 == 0:print(i, loss.item())
五、结果预测
绘制样本的散点图与预测值的折线图
print('结果预测')
y_pred = model(x_data)
plt.plot(x, y, 'b.')
plt.plot(x, y_pred.data.numpy(), 'r-')
plt.show()
总结
使用Pytorch进行训练主要的三步:
(1)数据处理:将数据维度转换为(batch, *),数据类型转换为可训练的tensor;
(2)构建模型:继承nn.Module,定义连接层与运算方法,实例化,定义损失函数与优化器;
(3)迭代训练:循环迭代,依次执行梯度清零、梯度计算、参数更新。
相关文章:

Pytorch笔记之回归
文章目录 前言一、导入库二、数据处理三、构建模型四、迭代训练五、结果预测总结 前言 以线性回归为例,记录Pytorch的基本使用方法。 一、导入库 import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Variable # 定义求…...
哪个证券公司可以加杠杆,淘配网是您的杠杆综合网站!
在证券市场中,投资者经常寻求提高资金杠杆以获得更高的回报。杠杆交易可以让您在不必拥有等额本金的情况下,参与更多的交易活动。然而,为了进行杠杆交易,您需要找到一家证券公司或平台,可以为您提供这种服务。本文将介…...
万字解读|怎样激活 TDengine 最高性价比?
不知不觉间,TDengine 已经 6 岁多了。在这 6 年多的时间里,我们从零开始,在一行又一行代码的淬炼下,TDengine 从 1.6 走过 2.0,终于走到如今的 3.0 时代。 自 2022 年下旬发布以来,经过我们不断地打磨优化…...

【目标检测】大图包括标签切分,并转换成txt格式
前言 遥感图像比较大,通常需要切分成小块再进行训练,之前写过一篇关于大图裁切和拼接的文章【目标检测】图像裁剪/标签可视化/图像拼接处理脚本,不过当时的工作流是先将大图切分成小图,再在小图上进行标注,于是就不考…...

gitlab登录出现的Invalid login or password问题
前提 我是在一个项目里创建的gitlab账号,想在别的项目里登录或者官网登录发现怎么都登陆不上 原因 在GitLab中,有两种不同的账号类型:项目账号和个人账号(官网账号)。 项目账号:项目账号是在特定GitLab…...
git本地创建分支并推送到远程
1. 创建本地分支并切换到该分支 比如我创建dev分支。git checkout -b相当于把两条命令git branch 分支名、git checkout分支名合成一条,来实现一条命令新建分支切换分支。 git checkout -b dev 2. 将dev分支推送到远程 -u参数与--set-upstream这一串是一个意思&am…...

手机待办事项app哪个好?
手机是日常很多人随身携带的设备,手机除了拥有通讯功能外,还能帮助大家高效管理日常工作,借助手机上的待办事项提醒APP可以快速地帮助大家规划日常事务,提高工作的效率。 过去,我也曾经在寻找一款能够将工作任务清晰罗…...

容器运行elasticsearch安装ik分词非root权限安装报错问题
有些应用默认不允许root用户运行,来确保应用的安全性,这也会导致我们使用docker run后一些操作问题,用es安装ik分词器举例(es版本8.9.0,analysis-ik版本8.9.0) 1. 容器启动elasticsearch 如挂载方式&…...

UE4游戏客户端开发进阶学习指南
前言 两年多前写过一篇入门指南,教大家在短时间内快速入门UE4的使用,在知乎被很多人收藏了。如今鸡佬使用UE快三年了,是时候更新一下进阶版本的学习指南。本文对于读者的要求: 有一定的C基础已经入门UE,能够用蓝图和…...
javaee SpringMVC 乱码问题解决
方法一 在web.xml文件中注册过滤器 <!-- 注册过滤器 设置编码 --><filter><filter-name>CharacterEncodingFilter</filter-name><filter-class>org.springframework.web.filter.CharacterEncodingFilter</filter-class><init-param&…...

用ChatGPT做数据分析,提升10倍工作效率
目录 写报告分析框架报告框架指标体系设计 Excel 写报告 分析框架 拿到一个专题不知道怎么做?没关系,用ChatGPT列一下框架。 以上分析框架挺像那么回事,如果没思路的话,问问ChatGPT能起到找灵感的作用。 报告框架 报告的框架…...

【Pytorch笔记】4.梯度计算
深度之眼官方账号 - 01-04-mp4-计算图与动态图机制 前置知识:计算图 可以参考我的笔记: 【学习笔记】计算机视觉与深度学习(2.全连接神经网络) 计算图 以这棵计算图为例。这个计算图中,叶子节点为x和w。 import torchw torch.tensor([1.]…...

浏览器安装vue调试工具
下载扩展程序文件 下载链接:链接: 下载连接网盘地址, 提取码: 0u46,里面有两个crx,一个适用于vue2,一个适用于vue3,可根据vue版本选择不同的调试工具 crx安装扩展程序不成功,将文件改为rar文件然后解压 安装…...
C/C++学习 -- RSA算法
概述 RSA算法是一种广泛应用于数据加密与解密的非对称加密算法。它由三位数学家(Rivest、Shamir和Adleman)在1977年提出,因此得名。RSA算法的核心原理是基于大素数的数学问题的难解性,利用两个密钥来完成加密和解密操作。 特点 …...

基于若依ruoyi-nbcio支持flowable流程增加自定义业务表单(一)
因为需要支持自定义业务表单的相关流程,所以需要建立相应的关联表 1、首先先建表wf_custom_form -- ---------------------------- -- Table structure for wf_custom_form -- ---------------------------- DROP TABLE IF EXISTS wf_custom_form; CREATE TABLE wf…...

面试经典 150 题 1 —(数组 / 字符串)— 88. 合并两个有序数组
88. 合并两个有序数组 方法一: class Solution { public:void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {for(int i 0; i<n;i){nums1[mi] nums2[i];}sort(nums1.begin(),nums1.end());} };方法二: clas…...

【大数据 | 综合实践】大数据技术基础综合项目 - 基于GitHub API的数据采集与分析平台
🤵♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…...

超高频RFID模具精细化生产管理方案
近二十年来,我国的模具行业经历了快速发展的阶段,然而,模具行业作为一个传统、复杂且竞争激烈的行业,企业往往以订单为导向,每个订单都需要进行新产品的开发,从客户需求分析、结构确定、报价、设计、物料准…...

FP-Growth算法全解析:理论基础与实战指导
目录 一、简介什么是频繁项集?什么是关联规则挖掘?FP-Growth算法与传统方法的对比Apriori算法Eclat算法 FP树:心脏部分 二、算法原理FP树的结构构建FP树第一步:扫描数据库并排序第二步:构建树 挖掘频繁项集优化&#x…...

Jmeter 分布式压测,你的系统能否承受高负载?
你可以使用 JMeter 来模拟高并发秒杀场景下的压力测试。这里有一个例子,它模拟了同时有 5000 个用户,循环 10 次的情况。 请求默认配置 token 配置 秒杀接口 结果分析 但是,实际企业中,这种压测方式根本不满足实际需求。下…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...