当前位置: 首页 > news >正文

Holographic MIMO Surfaces (HMIMOS)以及Reconfigurable Holographic Surface(RHS)仿真

这里写目录标题

  • Simulation setup
  • chatgpt帮我总结
  • 代码
  • 总结:chatgpt生成的代码还是不靠谱:考虑把之前看的RHS中对于多用户的改成单用户
  • 全系MIMO与普通MIMO或者说RIS的区别到底是啥?


Holographic MIMO Surfaces (HMIMOS)以及Reconfigurable Holographic Surface(RHS)仿真:

Simulation setup

In this section, we evaluate the performance of the proposed joint sum rate optimization algorithm for the RHS-aided multi-user system. Simulation parameters are set as below. The carrier frequency f f f is 10 G H z 6 10 \mathrm{GHz}^{6} 10GHz6 , and the value of the reference wave’s propagation vector ∣ k s ∣ \left|\mathbf{k}_{s}\right| ks is 3 ∣ k f ∣ \sqrt{3}\left|\mathbf{k}_{f}\right| 3 kf , i.e., 2 3 π f / c 2 \sqrt{3} \pi f / c 23 πf/c , where c c c is the speed of light. The element spacing of the RHS d x d_{x} dx and d y d_{y} dy are both set as 0.75 c m 0.75 \mathrm{~cm} 0.75 cm . The height of the BS is 50 m 50 \mathrm{~m} 50 m , and the transmit power P T P_{T} PT is 1 W 1 \mathrm{~W} 1 W [10]. The propagation environment between the BS and each user is modeled as a sparse millimeter wave channel with I I I paths, i.e., H l = M N J I ∑ i = 1 I α l i a r ( ϕ r i l ) a t ( θ t i l , φ t i l ) H \mathbf{H}_{l}=\sqrt{\frac{M N J}{I}} \sum_{i=1}^{I} \alpha_{l}^{i} \mathbf{a}_{r}\left(\phi_{r_{i}}^{l}\right) \mathbf{a}_{t}\left(\theta_{t_{i}}^{l}, \varphi_{t_{i}}^{l}\right)^{H} Hl=IMNJ i=1Iαliar(ϕril)at(θtil,φtil)H , where α l i \alpha_{l}^{i} αli is the complex gain of the i i i -th path, ϕ r i l \phi_{r_{i}}^{l} ϕril and ( θ t i l , φ t i l ) \left(\theta_{t_{i}}^{l}, \varphi_{t_{i}}^{l}\right) (θtil,φtil) are the physical angle of arrival and angle of departure, respectively. a r ( ϕ r i l ) \mathbf{a}_{r}\left(\phi_{r_{i}}^{l}\right) ar(ϕril) and a t ( θ t i l , φ t i l ) \mathbf{a}_{t}\left(\theta_{t_{i}}^{l}, \varphi_{t_{i}}^{l}\right) at(θtil,φtil) are the antenna array response vectors of the user l and the BS, respectively [7]. For simplicity, we consider one line-of-sight path and one none-line-of-sight path between the BS and each user [6].
Fig. 3 shows the normalized radiation pattern of the RHS based on the proposed hybrid beamforming scheme. The desired radiation directions { ( θ i , ϕ i ) } \left\{\left(\theta_{i}, \phi_{i}\right)\right\} {(θi,ϕi)} are set as { ( 3 0 ∘ , − 5 0 ∘ ) , ( 4 5 ∘ , 0 ∘ ) , ( 6 0 ∘ , 5 0 ∘ ) } \left\{\left(30^{\circ},-50^{\circ}\right),\left(45^{\circ}, 0^{\circ}\right),\left(60^{\circ}, 50^{\circ}\right)\right\} {(30,50),(45,0),(60,50)} . We observe that directions of the beams generated by the RHS are the same as the desired beam directions with low sidelobe levels (i.e., about − 9 d B -9 \mathrm{~dB} 9 dB ). This demonstrates that through controlling the radiation amplitude of each radiation element, the RHS has the capability of accurate multibeam steering.

chatgpt帮我总结

在这里插入图片描述

It seems like you’ve provided a description of a simulation scenario and the parameters used in the evaluation of a joint sum rate optimization algorithm for a multi-user system with a reconfigurable intelligent surface (RHS). Here’s a breakdown of the information you’ve provided:

  1. Simulation Parameters:

    • Carrier Frequency (f): 10 GHz
    • Reference Wave’s Propagation Vector (|𝑘𝑠|): √3|𝑘𝑓| = 2√3π𝑓/𝑐, where 𝑐 is the speed of light.
    • Element Spacing of the RHS (dx and dy): Both set as 0.75 cm.
    • Height of the Base Station (BS): 50 m
    • Transmit Power (PT): 1 W
    • Propagation Environment: Modeled as a sparse millimeter-wave channel with I paths.
  2. Channel Model:

    • The propagation environment between the BS and each user is modeled using a sparse millimeter-wave channel.
    • The channel matrix (𝐻𝑙) is described as 𝑠𝑞𝑟𝑡{𝑀𝑁𝐽𝐼}∑𝑖=1𝐼𝛼𝑙𝑖𝑎𝑟(𝜑𝑟𝑖𝑙)𝑎𝑡(𝜃𝑡𝑖𝑙,𝜙𝑡𝑖𝑙)𝐻.
    • 𝛼𝑙𝑖 is the complex gain of the i-th path, and 𝜑𝑟𝑖𝑙 and (𝜃𝑡𝑖𝑙,𝜙𝑡𝑖𝑙) are the angles of arrival and departure.
    • 𝑎𝑟(𝜑𝑟𝑖𝑙) and 𝑎𝑡(𝜃𝑡𝑖𝑙,𝜙𝑡𝑖𝑙) are the antenna array response vectors of the user and the BS, respectively.
    • For simplicity, one line-of-sight path and one non-line-of-sight path are considered between the BS and each user.
  3. Radiation Pattern of the RHS:

    • Fig. 3 shows the normalized radiation pattern of the RHS based on a hybrid beamforming scheme.
    • The desired radiation directions {𝜃𝑖,𝜙𝑖} are set as {(30°,-50°), (45°, 0°), (60°, 50°)}.
    • The beams generated by the RHS align with the desired beam directions with low sidelobe levels, approximately -9 dB. This demonstrates the RHS’s capability for accurate multibeam steering.

This information provides an overview of the simulation setup and the characteristics of the multi-user system with an RHS. It seems that this evaluation is focused on the beamforming capability of the RHS and its ability to align beams accurately with desired directions while minimizing sidelobe levels.

代码

% 设置参数
fc = 10e9; % 10 GHz的载波频率
lambda = physconst('LightSpeed') / fc; % 波长% 天线阵列参数
dx = 0.0075; % x方向上的元素间距 (0.0075 m = 0.75 cm)
dy = 0.0075; % y方向上的元素间距 (0.0075 m = 0.75 cm)
num_elements_x = 4; % x方向上的天线元素数量
num_elements_y = 4; % y方向上的天线元素数量% 创建天线阵列
tx_array = phased.URA('Size', [num_elements_x, num_elements_y], 'ElementSpacing', [dx, dy]);% 模拟多径信道
num_paths = 2; % 仅考虑两个路径(一个LOS路径和一个NLOS路径)
path_delays = [0, 10e-9]; % 路径延迟时间
path_gains = [1, 0.1]; % 路径增益% 创建多径信道对象
channel = phased.WidebandMillimeterWaveChannel(...'PropagationSpeed', physconst('LightSpeed'), ...'CarrierFrequency', fc, ...'NumPaths', num_paths, ...'PathDelays', path_delays, ...'AveragePathGains', path_gains);% 波束赋形
desired_angles = [30, -50; 45, 0; 60, 50]; % 期望波束方向(角度)
beamformer = phased.PhaseShiftBeamformer('SensorArray', tx_array, 'OperatingFrequency', fc);
weights = step(beamformer, desired_angles);% 绘制波束赋形权重
figure;
pattern(tx_array, fc, [-180:180], [-90:90], 'Weights', weights);% 显示结果
disp('波束赋形权重:');
disp(weights);

这个示例创建了一个简单的多径信道,一个二维的天线阵列,然后进行了波束赋形。请注意,这只是一个简化的示例,实际应用中可能需要更复杂的信道模型和波束赋形算法,具体的参数设置和模型细节也需要根据实际需求进行调整。此外,上述代码只演示了波束赋形的一部分,实际系统的性能评估需要更多的工作和分析。


我之前提到的 phased.URA 函数是 MATLAB 中的一个用于创建均匀矩形阵列(Uniform Rectangular Array)的函数。均匀矩形阵列是一种常见的天线阵列类型,其中天线元素按矩形排列,并且在水平和垂直方向上具有相等的间距。

具体来说,phased.URA 是 MATLAB 的 Phased Array System Toolbox 中的一个函数。它允许你创建均匀矩形阵列,并可以指定阵列的参数,如阵列的大小、天线元素的间距等。通过创建这样的阵列,你可以用于模拟和分析信号的波束赋形、接收和传输性能,尤其在通信系统和雷达系统的建模和仿真中非常有用。

下面是 phased.URA 函数的基本语法:

array = phased.URA('PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2, ...);

其中,PropertyNamePropertyValue 是一对一对的名称-值对,用于设置阵列的各种属性,如阵列的大小、元素间距等。

要详细了解如何使用 phased.URA 函数以及其支持的属性,请参考 MATLAB 的官方文档或 Phased Array System Toolbox 的文档,这些文档将提供更多的示例和详细信息。


当然,我可以为您提供一些示例代码,演示如何手动创建一个均匀矩形天线阵列,而不依赖于特定的 MATLAB 工具箱。以下是一个使用基本的 MATLAB 函数和操作创建均匀矩形天线阵列的示例代码:

% 阵列参数
num_elements_x = 4; % x方向上的天线元素数量
num_elements_y = 4; % y方向上的天线元素数量
dx = 0.75; % x方向上的元素间距 (0.75 cm)
dy = 0.75; % y方向上的元素间距 (0.75 cm)% 创建均匀矩形天线阵列
element_positions = zeros(num_elements_x * num_elements_y, 3); % 初始化天线元素位置矩阵% 生成天线元素的位置
for i = 1:num_elements_xfor j = 1:num_elements_yelement_positions((i - 1) * num_elements_y + j, 1) = (i - 1) * dx;element_positions((i - 1) * num_elements_y + j, 2) = (j - 1) * dy;end
end% 显示阵列元素的位置
figure;
scatter3(element_positions(:,1), element_positions(:,2), zeros(size(element_positions,1)), 'filled');
xlabel('X轴位置 (m)');
ylabel('Y轴位置 (m)');
zlabel('Z轴位置 (m)');
title('均匀矩形天线阵列');% element_positions 现在包含了天线元素的位置信息

上述代码演示了如何手动创建一个均匀矩形天线阵列,并显示了阵列元素的位置。您可以根据需要进一步使用这些位置信息进行信道模拟、波束赋形等操作。这个示例不依赖于特定的 MATLAB 工具箱,只使用了基本的 MATLAB 函数和操作。


将您之前提供的描述转化为 MATLAB 代码,并且不依赖于 MATLAB 工具箱中的函数是一项复杂的任务,特别是在涉及到多径信道建模和波束赋形时。由于代码的复杂性和细节,以下是一个简化的示例,演示如何使用基本的 MATLAB 函数创建一个简单的多径信道,并进行一些简单的波束赋形。请注意,这个示例仅用于概念演示,并且不包括所有细节:

% 设置参数
fc = 10e9; % 载波频率 10 GHz
lambda =  physconst('LightSpeed') / fc; % 波长% 天线阵列参数
dx = 0.0075; % x方向上的元素间距 (0.0075 m = 0.75 cm)
dy = 0.0075; % y方向上的元素间距 (0.0075 m = 0.75 cm)
num_elements_x = 4; % x方向上的天线元素数量
num_elements_y = 4; % y方向上的天线元素数量% 创建均匀矩形天线阵列
element_positions = zeros(num_elements_x * num_elements_y, 3); % 初始化天线元素位置矩阵% 生成天线元素的位置
for i = 1:num_elements_xfor j = 1:num_elements_yelement_positions((i - 1) * num_elements_y + j, 1) = (i - 1) * dx;element_positions((i - 1) * num_elements_y + j, 2) = (j - 1) * dy;end
end% 信道模拟 - 多径信道
num_paths = 2; % 路径数量
path_delays = [0, 10e-9]; % 路径延迟时间
path_gains = [1, 0.1]; % 路径增益% 创建多径信道模型
channel_response = zeros(num_paths, size(element_positions, 1)); % 初始化信道响应矩阵% 生成多径信道响应
for i = 1:num_paths% 随机生成复杂增益alpha_i = path_gains(i) * (randn() + 1i * randn());% 生成每个天线元素的响应for j = 1:size(element_positions, 1)% 随机生成相位phase = 2 * pi * rand();% 计算每个天线元素的响应channel_response(i, j) = alpha_i * exp(1i * 2 * pi * fc * path_delays(i)) * exp(1i * phase);end
end% 显示阵列元素的位置
figure;
scatter3(element_positions(:, 1), element_positions(:, 2), zeros(size(element_positions, 1), 1), 'filled');
xlabel('X轴位置 (m)');
ylabel('Y轴位置 (m)');
zlabel('Z轴位置 (m)');
title('均匀矩形天线阵列');% channel_response 现在包含了多径信道的响应

请注意,这个示例是一个简化的模型,用于演示如何手动创建均匀矩形天线阵列、生成多径信道响应并显示阵列元素的位置。在实际应用中,信道建模和波束赋形通常需要更复杂的算法和细节。此外,由于不使用 MATLAB 工具箱中的函数,这个示例可能会缺少某些功能和精度。在实际项目中,建议使用适当的 MATLAB 工具箱和函数来处理复杂的任务。




以下是更详细的 MATLAB 代码,它演示了如何手动创建一个均匀矩形天线阵列、模拟多径信道、进行波束赋形并绘制波束赋形的结果:

% 设置参数
fc = 10e9; % 载波频率 10 GHz
lambda = physconst('LightSpeed') / fc; % 波长% 天线阵列参数
dx = 0.0075; % x方向上的元素间距 (0.0075 m = 0.75 cm)
dy = 0.0075; % y方向上的元素间距 (0.0075 m = 0.75 cm)
num_elements_x = 4; % x方向上的天线元素数量
num_elements_y = 4; % y方向上的天线元素数量% 创建均匀矩形天线阵列
element_positions = zeros(num_elements_x * num_elements_y, 3); % 初始化天线元素位置矩阵% 生成天线元素的位置
for i = 1:num_elements_xfor j = 1:num_elements_yelement_positions((i - 1) * num_elements_y + j, 1) = (i - 1) * dx;element_positions((i - 1) * num_elements_y + j, 2) = (j - 1) * dy;end
end% 信道模拟 - 多径信道
num_paths = 2; % 路径数量
path_delays = [0, 10e-9]; % 路径延迟时间
path_gains = [1, 0.1]; % 路径增益% 创建多径信道模型
channel_response = zeros(num_paths, size(element_positions, 1)); % 初始化信道响应矩阵% 生成多径信道响应
for i = 1:num_paths% 随机生成复杂增益alpha_i = path_gains(i) * (randn() + 1i * randn());% 生成每个天线元素的响应for j = 1:size(element_positions, 1)% 随机生成相位phase = 2 * pi * rand();% 计算每个天线元素的响应channel_response(i, j) = alpha_i * exp(1i * 2 * pi * fc * path_delays(i)) * exp(1i * phase);end
end% 波束赋形 - 生成波束权重
desired_angle = [30, -50]; % 期望波束方向(角度)% 初始化波束权重矩阵
beamforming_weights = beamforming_weights(:); % 将波束权重变为列向量
beam_pattern = zeros(size(angles)); % 初始化波束功率for i = 1:length(angles)% 计算每个角度下的波束功率beam_pattern(i) = abs(sum(beamforming_weights .* exp(-1i * 2 * pi * fc * (dx * sind(angles(i)) + dy * sind(angles(i))))));
end% 绘制波束赋形的结果
figure;
plot(angles, 10 * log10(beam_pattern / max(beam_pattern)));
xlabel('角度(度)');
ylabel('波束功率(dB)');
title('波束赋形结果');
% 显示阵列元素的位置
figure;
scatter3(element_positions(:, 1), element_positions(:, 2), zeros(size(element_positions, 1), 1), 'filled');
xlabel('X轴位置 (m)');
ylabel('Y轴位置 (m)');
zlabel('Z轴位置 (m)');
title('均匀矩形天线阵列');% channel_response 包含多径信道的响应
% beamforming_weights 包含波束赋形的权重

此示例创建了均匀矩形天线阵列,模拟了多径信道,进行了波束赋形并绘制了波束赋形的结果。波束赋形结果以角度-波束功率的形式绘制。请注意,这个示例仍然是一个简化的模型,实际应用中可能需要更复杂的信道建模和波束赋形算法。

总结:chatgpt生成的代码还是不靠谱:考虑把之前看的RHS中对于多用户的改成单用户

角度距离域信道,考虑太赫兹,即基站和目标的距离小于瑞丽距离。

全系MIMO与普通MIMO或者说RIS的区别到底是啥?

相关文章:

Holographic MIMO Surfaces (HMIMOS)以及Reconfigurable Holographic Surface(RHS)仿真

这里写目录标题 Simulation setupchatgpt帮我总结代码总结:chatgpt生成的代码还是不靠谱:考虑把之前看的RHS中对于多用户的改成单用户全系MIMO与普通MIMO或者说RIS的区别到底是啥? Holographic MIMO Surfaces (HMIMOS)…...

RK3568笔记一:RKNN开发环境搭建

若该文为原创文章,转载请注明原文出处。 由于对AI的好奇,想要学习如何部署AI,所以从RV1126到RK3568中过渡。 一、介绍 RK3568开发板使用的是正点原子新出的ATK-DLRK3568 开发板,主要是学习从训练到部署的全过程,并记…...

设计模式 - 行为型模式:策略模式(概述 | 案例实现 | 优缺点 | 使用场景)

目录 一、行为型模式 1.1、策略模式 1.1.1、概论 1.1.2、案例实现 1.1.3、优缺点 1.1.4、使用场景 一、行为型模式 1.1、策略模式 1.1.1、概论 策略模式设计的每一个算法都封装了起来,使他们可以相互替换,通过一个对象委派不同的算法给相应的客户…...

rancher部署pv、pvc、离线部署nfs

(1)NFS离线安装 使用nfs配置两台机器共享目录 假设两台机器188.188.30.32(服务端)、188.188.30.31(客户端)配置nfs 1.在可以联网的机器上下载rpm安装包 yum -y install nfs-utils --downloadonly --dow…...

视频拍摄教程分享

(1)新片场:静物美食视频拍摄(22.76GB) 链接:https://pan.baidu.com/s/1uj6wcPXGw-ztLQ1cdyogTA 提取码:929z(永久有效) (2)新片场:《孙晓迪分镜头脚本》掌握10种类型商业广告创作思…...

IP组成,分类,子网划分

一、基本概念 IP地址是指互联网协议地址,IP地址是IP协议提供的一种统一的地址格式,他为互联网上的每一个网络和每一台主机分配了一个逻辑地址,以此来屏蔽物理地址的差异,每个ip地址由网络地址和主机地址两个部分组成,网…...

Python视频剪辑-Moviepy视频内容变换技术

在视频编辑中,内容变换是个不能忽视的环节。这不仅仅是关于视频的方向、颜色或者大小,更多的是关于如何让视频内容更具创造性和吸引力。接下来将深入探讨如何使用MoviePy库进行高级的视频内容变换。 文章目录 视频内容变换函数剪辑逆时针旋转指定的角度或弧度像素的RGB值各取…...

OceanBase 数据库入门知识

🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开兴好久好久😎 📚系列专栏:Java全栈,…...

自定义无边框窗口

效果: 可拖动拉伸 ui:设计如下 样式表:在ui CustomDialog 里设置的 #widget_title{background: #E6F1EB;border-top-left-radius: 20px;border-top-right-radius: 20px;}#widget_client{background-color: rgb(255, 255, 255);border-bottom…...

【网络安全 --- kali2023安装】超详细的kali2023安装教程(提供镜像资源)

如果你还没有安装vmware 虚拟机,请参考下面博客安装 【网络安全 --- 工具安装】VMware 16.0 详细安装过程(提供资源)-CSDN博客【网络安全 --- 工具安装】VMware 16.0 详细安装过程(提供资源)https://blog.csdn.net/m0…...

机器学习笔记(二)

过拟合 如下图左边,模型出现了过拟合现象 为了解决过拟合现象, 其中一个做法是多收集数据,如右图。 第二种做法是减少模型的特征数量,即x 第三种做法是正则化 正则化就是减少x前面的参数 w的数值, 不用消除x 正则化的梯度下降如下, 因为只是缩小了w的值,而 b的值保持不变 …...

Java @Override 注解

在代码中,你可能会看到大量的 Override 注解。 这个注解简单来说就是让编译器去读的,能够避免你在写代码的时候犯一些低级的拼写错误。 Java Override 注解用来指定方法重写(Override),只能修饰方法并且只能用于方法…...

用rabbitMq 怎么处理“延迟消息队列”?

延迟消息队列是一种允许消息在发送后等待一段时间,然后再被消费的机制。这种机制通常用于需要延迟处理的应用场景,如定时任务、消息重试、消息调度等。在 RabbitMQ 中,实现延迟消息队列需要使用一些额外的组件和技术,因为 RabbitM…...

不常见的JS加密分析

前言 ​ 今天发现一个很少见的JS加密代码,他由一段十分少见的环境检测逻辑,修改一个字符都会被检测到,十分神奇,今天献上。 源代码 let hiJsJiami;!function(){const Zg3GArray.prototype.slice.call(arguments);return eval(&…...

TCP原理特性详解

文章目录 可靠传输机制1.确认应答2.超时重传2.连接管理1.三次握手2.四次挥手 传输效率1.滑动窗口2.流量控制3.拥塞控制4.延时应答5.捎带应答 面向字节流粘包问题 TCP异常情况 可靠传输机制 可靠性:即发送方知道数据是发送成功了,还是失败了。 1.确认应答…...

什么是懒加载,JS如何实现懒加载,在php中如何去实现懒加载

懒加载(Lazy Loading)是一种前端优化技术,用于推迟加载页面中的某些资源(如图片、脚本、样式等),直到用户需要访问或者接近该资源时才进行加载。这可以减少初始页面加载时间,并提高页面性能和用…...

Cesium 展示——读取文件——加载 geojson 文件数据

文章目录 需求分析方法一:加载 geojson 文件方法二:加载 后台解析后的 geojson 文件结果需求 在做项目时,对加载 geojson 格式的数据有了一定的了解,因此试着尝试接手后台解析的 geojson 数据进行绘制,因此做了总结如下 分析 方法一:加载 geojson 文件 this.od6 = wi…...

(二)Apache log4net™ 手册 - 配置

0、引言 在上一篇文章中我们简单介绍了 Log4Net 及其核心的三大组件。本文将在上一篇文章的基础上继续探讨与 Log4Net 配置相关的内容。 1、配置 将日志请求插入到应用程序代码中需要进行大量的计划和工作。观察表明,大约4%的代码专门用于日志记录。因此&#xf…...

Elasticsearch:时间点 API

Elasticsearch:时间点 API-CSDN博客 在今天的文章中,我将着重介绍 Point in time API。在接下来的文章中,我将介绍如何运用 PIT 来对搜索结果进行分页。这也是被推荐使用的方法。 Point in time API 默认情况下,搜索请求针对目标…...

hive数据表定义

分隔符 CREATE TABLE emp( userid bigint, emp_name array<string>, emp_date map<string,date>, other_info struct<deptname:string, gender:string>) ROW FORMAT DELIMITED FIELDS TERMINATED BY \t COLLECTION ITEMS TERMINATED BY , MAP KEYS TERMINAT…...

OpenMesh 网格简化之顶点聚类

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 顶点聚类方法将落在给定大小体素中的所有顶点集中到单个顶点之上,其过程有点类似于点云体素下采样,之后再基于聚类之后的顶点重新连接面片,以达到网格简化的目的。 二、实现代码 #define _USE_MATH_DEFINES #in…...

C++ 类和对象篇(八) const成员函数和取地址运算符重载

目录 一、const成员函数 1. const成员函数是什么&#xff1f; 2. 为什么有const成员函数&#xff1f; 3. 什么时候需要使用const修饰成员函数&#xff1f; 二、取地址运算符重载 1. 为什么需要重载取地址运算符&#xff1f; 2. 默认取地址运算符重载函数 3. 默认const取地址运…...

k8s 集群安装(vagrant + virtualbox + CentOS8)

主机环境&#xff1a;windows 11 k8s版本&#xff1a;v1.25 dashboard版本&#xff1a;v2.7.0 calico版本&#xff1a; v3.26.1 CentOS8版本&#xff1a;4.18.0-348.7.1.el8_5.x86_64 用到的脚本&#xff1a; https://gitcode.net/sundongsdu/k8s_cluster 1. Vagrant创建…...

8、Docker数据卷与数据卷容器

一、数据卷(Data Volumes) 为了很好的实现数据保存和数据共享&#xff0c;Docker提出了Volume这个概念&#xff0c;简单的说就是绕过默认的联合文件系统&#xff0c;而以正常的文件或者目录的形式存在于宿主机上。又被称作数据卷。 数据卷 是一个可供一个或多个容器使用的特殊目…...

大数据与Hadoop入门理论

一、大数据的3种数据类型 1、结构化数据 可定义&#xff0c;有类型、格式、结构的强制约束 如&#xff1a;RDBMS&#xff08;关系型数据库管理系统&#xff09; 2、非结构化数据 没有规律没有数据约束可言&#xff0c;很复杂难以解析 如&#xff1a;文本文件&#xff0c;视…...

持续集成部署-k8s-深入了解 Pod:探针

持续集成部署-k8s-深入了解 Pod:探针 1. 探针分类2. 探针探测方式3. 探针参数配置4. 启动探针的应用5. Liveness 探针的应用6. Readiness 探针的应用1. 探针分类 Kubernetes 中的探针是指容器内的进程用于告知 Kubernetes 组件其自身状态的机制; Readiness Probe:就绪探针用…...

来单提醒/客户催单 ----苍穹外卖day9

来单提醒 需求分析 代码开发 注意:前端请求的并不是8080端口;而是先请求Nginx,Nginx进行反向代理以后转发到8080端口 这段代码首先创建了一个orders类用于更新订单状态 并且在更新状态后使用websocket发送给后端提醒 将信息放在map后,使用json的string化方式传给一个接收对象,…...

【单片机】18-红外线遥控

一、红外遥控背景知识 1.人机界面 &#xff08;1&#xff09;当面操作&#xff1a;按键&#xff0c;旋转/触摸按键&#xff0c;触摸屏 &#xff08;2&#xff09;遥控操作&#xff1a;红外遥控&#xff0c;433M/2.4G无线通信【穿墙能力强】&#xff0c;蓝牙-WIFI-Zigbee-LoRa等…...

【Node.js】module 模块化

认识 node.js Node.js 是一个独立的 JavaScript 运行环境&#xff0c;能独立执行 JS 代码&#xff0c;可以用来编写服务器后端的应用程序。基于Chrome V8 引擎封装&#xff0c;但是没有 DOM 和 BOM。Node.js 没有图形化界面。node -v 检查是否安装成功。node index.js 执行该文…...

Vue中如何进行分布式日志收集与日志分析(如ELK Stack)

在Vue中实现分布式日志收集与日志分析&#xff08;使用ELK Stack&#xff09; 日志收集和分析在现代应用程序中是至关重要的&#xff0c;它们可以帮助开发人员监视和诊断应用程序的行为&#xff0c;从而提高应用程序的稳定性和性能。ELK Stack&#xff08;Elasticsearch、Logs…...